200 Marks in JEE Mains Percentile 2025 - Expected Percentile and Rank

Ionization Of Acids And Bases - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:35 AM | #JEE Main

Quick Facts

  • 14 Questions around this concept.

Concepts Covered - 2

Ionisation of weak acids and Ostwald’s dilution law

pH of Weak Acids
Weak acids are those acids which dissociate partially in solutions. For example:

  • 8 M HA (Ka = 2 x 10-8)
    The chemical equation for the dissociation of weak acid HA is as follows:
               \mathrm{HA\: \rightleftharpoons \: H^{+}\: +\: A^{-}}
    Initial:   8M            0           0
    Equil:  8 - 8?         8?         8?

    The equilibrium constant Ka for the weak acid is given as follows:
    \\\mathrm{K_{a}\: =\: \frac{[H^{+}][A^{-}]}{[HA]}\: =\: \frac{8\alpha \, .\, 8\alpha }{8(1-\alpha )}\: =\: \frac{8\alpha ^{2}}{1-\alpha }}\\\\\mathrm{K_{a}\: =\: 8\alpha ^{2}\: \: \: \: \: \: \: (as\: (1-\alpha) \: \approx \: 1)}\\\\\mathrm{Thus,\: \alpha \: =\: \sqrt{\frac{K_{a}}{8}}\: =\: \sqrt{\frac{2\, x\, 10^{-8}}{8}}\: =\: \sqrt{\frac{10^{-8}}{4}}\: =\: 0.5\, x\, 10^{-4}}\\\\\mathrm{[H^{+}]\: =\: 8\,\, x\,\, 0.5\,\, x\,\, 10^{-4}\: =\: 4\: x\: 10^{-4}}\\\\\mathrm{pH\: =\: -log_{10}4\: +\: 4}\\\\\mathrm{pH\: =\: -0.60\: +\: 4\: =\: 3.4}
    Thus, pH of this given acid = 3.4
     
  • 0.002N CH3COOH(? = 0.02)
    The chemical equation for the dissociation of CH3COOH is as follows:
               \mathrm{CH_{3}COOH\: \rightleftharpoons \: CH_{3}COO^{-}\: +\: H^{+}}
    Initial:           c                              0                   0
    Equil:         c - c?                         c?                c?

    The equilibrium constant Ka for the weak acid is given as follows:
    \\\mathrm{K_{a}\: =\: \frac{[CH_{3}COOH^{-}][H^{+}]}{[CH_{3}COOH]}\: =\: \frac{c\alpha \, .\, c\alpha }{c(1-\alpha )}\: =\: \frac{c\alpha ^{2}}{1-\alpha }}\\\\\mathrm{K_{a}\: =\: c\alpha ^{2}\: \: \: \: \: \: \: (as\: (1-\alpha) \: \approx \: 1)}\\\\\mathrm{Now,\: as\: we\: have\: given:}\\\mathrm{c\: =\: 0.002N\: or\: 0.002M\: \: \: \: \: \: (Normality\: =\: Molarity,\: as\: n\: factor\: =\: 1)}\\\mathrm{\alpha \: =\:\frac{2}{100}\: =\: 0.02}\\\\\mathrm{Thus,\: [H^{+}]\: =\: 0.002\,\, x\,\, 0.02\: =\: 4\: x\: 10^{-5}}\\\\\mathrm{pH\: =\: -log_{10}(4\: x\: 10^{-5})}\\\\\mathrm{pH\: =\: 5\: -\:log 4\: =\: 4.4}
    Thus, pH of acetic acid = 4.4

 

Ostwald's Dilution Law

This is an application of law of mass action for weak electrolyte dissociation equilibria. Consider ionisation of a weak electrolyte say a monoprotic acid, acid HA.
\mathrm{HA(aq)\:\: \rightleftharpoons \: H^{+}\: (aq)+\: A^{-}(aq)}

Thus,
                                          \mathrm{HA\: \rightleftharpoons \: H^{+}\: +\: A^{-}}
Moles before dissociation       1             0            0
Moles after dissociation        1 - ?          ?           ?

? is the degree of dissociation of weak acid HA and c is the concentration.

Thus, according to equilibrium constant equation, we have:
\\\mathrm{K_{a}\: =\: \frac{[H^{+}][A^{-}]}{[HA]}\: =\: \frac{c\alpha .c\alpha }{c(1-\alpha )}}\\\\\mathrm{K_{a}\: =\: \frac{c\alpha ^{2}}{(1-\alpha )}}
For weak electrolytes, ? is small, thus 1 - ? = 1
\mathrm{K_{a}\: =\: c\alpha ^{2}\: or\: \alpha \: =\: \sqrt{\left ( \frac{K_{a}}{c} \right )}}

Similar expression can be made for a weak base as BOH:
\mathrm{BOH(aq)\: \: \rightleftharpoons \: B^{+}(aq)\: +\: OH^{-}(aq)}

Similarly for the base BOH, the expression of Kb can be written as 
\mathrm{BOH\: \rightleftharpoons \: B^{+}\: +\: OH^{-}}
\mathrm{K_{b}\: =\: \frac{c\alpha ^{2}}{(1-\alpha )}}
Thus, if 1 - ? = 1, then 
\mathrm{K_{b}\: =\: c\alpha ^{2}\: or\: \alpha \: =\: \sqrt{\left ( \frac{K_{b}}{c} \right )}}

From the expression for Ka or Kb it is evident that 

(1) As the value of concentration decreases, the degree of dissociation increases 

(2) As the value of concentration increases, the degree of dissociation decreases 

This is called as Ostwald's dilution law for weak electrolytes

Ionization Constant of Water / Ionic Product of Water

The ionisation of water occurs as follows:
\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})

The equilibrium constant here is defined in a different way, and is called as ionic product Kof water and is given by:
\mathrm{K}_{\mathrm{w} }=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]

At 250C, Kw = 1.0 x 10-14

Experimentally it has been seen that the Kw value changes on increasing or decreasing the temperature. At 630C, Kw = 10-13 and at 110C, Kw = 0.3 x 10-14

\mathrm{since\: pure\: water\: is\: neutral,\: \left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{W}}}=10^{-7} \mathrm{M} \: at\: 25^{\circ} \mathrm{C}}

  • If a strong acid is added to it, [H+] increases and hence [OH-] < 10-7M at 250C and solution is said to be acidic.
  • If a strong base is added to it, [OH-] increases and hence [H+] must decrease in order to keep Kw constant. Now [OH-] > 10-7M and solution is basic (or alkaline).

 

Temperature dependence of Equilibrium Constant: Vant Hoff's Equation

                        \mathrm{ \ell n \left [ \frac{K_{T_2}}{K_{T_1}} \right ]=\frac{\Delta H}{R}\left [ \frac{1}{T_1}-\frac{1}{T_2} \right ]}

\Rightarrow\mathrm{ 2.303\ log_{10} \left [ \frac{K_{T_2}}{K_{T_1}} \right ]=\frac{\Delta H}{R}\left [ \frac{1}{T_1}-\frac{1}{T_2} \right ]}

Using the above equation, the value of Keq at any unknown temperature can be calculated if the Keq value at a particular temperature and \mathrm{\Delta H} is known.

Conversely, the above equation can also be used to calculate the value of \mathrm{\Delta H} if the values of Keq at two different temperatures are known.

Study it with Videos

Ionisation of weak acids and Ostwald’s dilution law
Ionization Constant of Water / Ionic Product of Water

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Ionisation of weak acids and Ostwald’s dilution law

Physical Chemistry

Page No. : 770

Line : 3

Ionization Constant of Water / Ionic Product of Water

Chemistry Part I Textbook for Class XI

Page No. : 217

Line : 45

E-books & Sample Papers

Get Answer to all your questions

Back to top