VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Inductive Effect is considered one the most difficult concept.
28 Questions around this concept.
The strongest acid amongst the following compounds is :
The correct order of -I effect is
Which of the following group shows -I effect
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Which of the following group shows +I effect ?
The increasing order of the pKa values of the following compounds is :
When a covalent bond is formed between atoms of different electronegativity, the electron density is more towards the more electronegative atom of the bond. Such a shift of electron density results in a polar covalent bond. Bond polarity leads to various electronic effects in organic compounds.
Let us consider cholorethane (CH3CH2Cl) in which the C–Cl bond is a polar covalent bond. It is polarised in such a way that the carbon-1 gains some positive charge (δ+) and the chlorine some negative charge (δ–). The fractional electronic charges on the two atoms in a polar covalent bond are denoted by symbol δ (delta) and the shift of electron density is shown by an arrow that points from δ+ to δ– end of the polar bond.
In turn carbon-1, which has developed partial positive charge (δ+) draws some electron density towards it from the adjacent C-C bond. Consequently, some positive charge (δδ+) develops on carbon-2 also, where δδ+ symbolises relatively smaller positive charge as compared to that on carbon – 1.
In other words, the polar C – Cl bond induces polarity in the adjacent bonds. Such polarisation of σ- bond caused by the polarisation of adjacent σ-bond is referred to as the inductive effect. This effect is passed on to the subsequent bonds also but the effect decreases rapidly as the number of intervening bonds increases and becomes vanishingly small after three bonds.
The inductive effect is related to the ability of substituent(s) to either withdraw or donate electron density to the attached carbon atom. Based on this ability, the substitutents can be classified as electron-withdrawing or electron-donating groups relative to hydrogen.
(1) Electron Withdrawing Groups: Halogens and many other groups such as nitro (-NO2), cyano (-CN), carboxy (-COOH), ester (COOR), aryloxy (-OAr, e.g. – OC6H5), etc. are electron-withdrawing groups.
(2) Electron Donating Groups: Alkyl groups like methyl (–CH3) and ethyl(–CH2–CH3) are electron-donating groups.
"Stay in the loop. Receive exam news, study resources, and expert advice!"