Careers360 Logo
JEE Main Eligibility Criteria 2025- Marks in 12th, Age Limit, Number of Attempts

Inductive Effect - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:35 AM | #JEE Main

Quick Facts

  • Inductive Effect is considered one the most difficult concept.

  • 14 Questions around this concept.

Solve by difficulty

The strongest acid amongst the following compounds is :

Concepts Covered - 1

Inductive Effect

When a covalent bond is formed between atoms of different electronegativity, the electron density is more towards the more electronegative atom of the bond. Such a shift of electron density results in a polar covalent bond. Bond polarity leads to various electronic effects in organic compounds.

Let us consider cholorethane (CH3CH2Cl) in which the C–Cl bond is a polar covalent bond. It is polarised in such a way that the carbon-1 gains some positive charge (δ+) and the chlorine some negative charge (δ). The fractional electronic charges on the two atoms in a polar covalent bond are denoted by symbol δ (delta) and the shift of electron density is shown by an arrow that points from δ+ to δ end of the polar bond.

    

In turn carbon-1, which has developed partial positive charge (δ+) draws some electron density towards it from the adjacent C-C bond. Consequently, some positive charge (δδ+) develops on carbon-2 also, where δδ+ symbolises relatively smaller positive charge as compared to that on carbon – 1.

In other words, the polar C – Cl bond induces polarity in the adjacent bonds. Such polarisation of σ- bond caused by the polarisation of adjacent σ-bond is referred to as the inductive effect. This effect is passed on to the subsequent bonds also but the effect decreases rapidly as the number of intervening bonds increases and becomes vanishingly small after three bonds.

The inductive effect is related to the ability of substituent(s) to either withdraw or donate electron density to the attached carbon atom. Based on this ability, the substitutents can be classified as electron-withdrawing or electron-donating groups relative to hydrogen.

(1) Electron Withdrawing Groups: Halogens and many other groups such as nitro (-NO2), cyano (-CN), carboxy (-COOH), ester (COOR), aryloxy (-OAr, e.g. – OC6H5), etc. are electron-withdrawing groups.

(2) Electron Donating Groups: Alkyl groups like methyl (–CH3) and ethyl(–CH2–CH3) are electron-donating groups.

Study it with Videos

Inductive Effect

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top