Lowest JEE Main Registration this Year? - Students Face Issues in Form Filling, Check Trends

Errors Of Measurements - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Error in sum and Error in difference of two physical quantities, Error in product and Error in division of two physical quantities are considered the most difficult concepts.

  • Errors of measurements, Error in quantity raised to some power are considered the most asked concepts.

  • 42 Questions around this concept.

Solve by difficulty

The period of oscillation of a simple pendulum is given by 

T\ =2\pi\sqrt{\frac{l}{g}}, Where  l is about 100\ cm known with an accuracy of 1\ mm. This time is about  2\ seconds. The time up to 100 oscillations is measured with a stopwatch of at least  0.1\ seconds. The percentage error in g is:

Concepts Covered - 4

Errors of measurements

It is the magnitude of the difference between the true value and the measured value of the quantity.

It may be positive in certain cases and negative in certain other cases

If   a_{1}, a_{2},a_{3}.........a_{n}   are a measured value

then   a_{m}= \frac{a_{1}+a_{2}+......a_{n}}{n}

where am  = true value

then  

1)Absolute Error for nth reading =\Delta a_n= a_{m}- a_{n}  = true value - measured value

So \Delta a_{1}      =        a_{m}- a_{1}

     \Delta a_{2}     =         a_{m}- a_{2}

2)  Mean absolute error

\dpi{100} \Delta\bar{ a}= \frac{\left | \Delta a_{1} \right |+\left | \Delta a_{2} \right |+....\left | \Delta a_{n} \right |}{n}

3) Relative error or Fractional error

The ratio of mean absolute error to the mean value of the quantity measured.

Relative \ \ error=\frac{\Delta\bar{ a}}{a_{m}}

\Delta\bar{a} - mean\: absolute\: error

a_{m}= mean \ \ value

4) Percentage error

Percentage \ \ error=\frac{\Delta\bar{ a}}{a_{m}}\times100 % 

Error in sum and Error in difference of two physical quantities

1)Error in sum (x=a+b)

  • Error in sum (x=a+b):-

  • absolute error in x=     \Delta x= \pm \left ( \Delta a+\Delta b \right )

         where 

           \Delta a= absolute error in measurement of a

           \Delta b= absolute error in measurement of b

           \Delta x= absolute error in measurement of x

  • The percentage error in the value of x =  \frac{\Delta x}{x} \times 100= \frac{\left ( \Delta a+\Delta b \right )}{a+b}\times 100

      2) Error in difference (x=a-b)

  • Absolute error in x = \Delta x= \pm \left ( \Delta a+\Delta b \right )

  • Percentage error in the value of x= \frac{\Delta x}{x} \times 100= \frac{\left ( \Delta a+\Delta b \right )}{a-b}\times 100

Error in product and Error in division of two physical quantities

1) Error in product x=ab

  • maximum fractional error=\frac{\Delta x}{x}= \pm \left ( \frac{\Delta a}{a} +\frac{\Delta b}{b} \right )

         where 

           \Delta a= absolute error in measurement of a

           \Delta b= absolute error in measurement of b

           \Delta x= absolute error in measurement of x

  •   The percentage error in the value of x= \dpi{100} \frac{\Delta x}{x}*100= \pm \left ( \frac{\Delta a}{a}*100+ \frac{\Delta b}{b}*100 \right )

                                                                        =(% error in value of a + % error in value of b)

2) Error in division x=\frac{a}{b}

  • maximum fractional error in  x = \frac{\Delta x}{x}=\pm \left ( \frac{\Delta a}{a}+\frac{\Delta b}{b} \right )

  • The percentage error in the value of x=\dpi{100} \frac{\Delta x}{x}*100= \pm \left ( \frac{\Delta a}{a}*100+ \frac{\Delta b}{b}*100 \right )

                                                                       =(% error in value of a + % error in value of b)

Error in quantity raised to some power

when  (x = \frac{a^n}{b^m})

  • The maximum fractional error in x is:- \frac{\Delta x}{x}=\pm \left ( n\frac{\Delta a}{a}+m\frac{\Delta b}{b} \right )
  • Percentage error in the value of x== \frac{\Delta x}{x}*100=\pm \left ( n\frac{\Delta a}{a}*100+m\frac{\Delta b}{b} *100\right )

Study it with Videos

Errors of measurements
Error in sum and Error in difference of two physical quantities
Error in product and Error in division of two physical quantities

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top