Careers360 Logo
JEE Main Login 2024 (Activated) - Candidate Login for Scorecard, Result, Answer Key

Elastic And Inelastic Collision - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Perfectly elastic oblique collision is considered one the most difficult concept.

  • Perfectly Elastic Head on Collision, Head on inelastic collision, Perfectly inelastic collision, Collision Between Bullet and Vertically Suspended Block is considered one of the most asked concept.

  • 46 Questions around this concept.

Solve by difficulty

  A large number (n) of identical beads, each of mass m and radius r are strung on a thin smooth rigid horizontal rod of length L (L>>r) and are at rest at random positions. The rod is mounted between two rigid supports (see figure). If one of the beads is now given a speedv, the average force experienced by each support after a long time is (assume all collisions are elastic) :

 

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss (in Joule) during the collision is :

A mass m moves with a  velocity \nu and collides inelastically with another identical mass .After collision the first mass moves with velocity \frac{v}{\sqrt{3}} in a direction perpendicular to the initial direction of motion.Find the speed of the 2nd mass after collision

 Two particles A and B of equal mass M are moving with the same speed v as shown in the figure.  They collide completely inelastically and move as a single particle C.  The angle θ that the path of C makes with the X-axis is given by :

The question contains Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement-1: Two particles moving in the same direction do not lose all their energy in a completely inelastic collision.

Statement-2: The principle of conservation of momentum holds true for all kinds of collisions.

Concepts Covered - 5

Perfectly Elastic Head on Collision
  • In Perfectly Elastic Collision, 

Law of conservation of momentum and that of Kinetic Energy hold good.

                                               

                       \frac{1}{2}m_{1}u_{1}^{2}+\frac{1}{2}m_{2}u_{2}^{2}= \frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}  …….(1)

                       m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}                …….(2)

                             m_{1},m_{2}:masses

                              u_{1},v_{1}:initial \: and\: final \: velocity\: of \: the\: mass\ m_{1}

                              u_{2},v_{2}:initial \: and\: final \: velocity\: of \: the\: mass\ m_{2}

From equation (1) and (2) 

                      We get,  u_1-u_2 = v_2 - v_1  …..(3)

                      Or,  we can say Relative velocity of approach = Relative velocity of separation 

And e = \frac{v_2-v_1}{u_1-u_2} = \frac{Relative\ velocity\ of\ separation}{Relative\ velocity\ of\ approach}

So in Perfectly Elastic Collision  

                                                                    e = 1 , 

                     From equations (1),(2), (3)

                     We get

                                           v_1 = (\frac{m_1-m_2}{m_1+m_2})u_1 + \frac{2m_2u_2}{m_1+m_2} ……(4) 

                    Similarly,        v_2 = (\frac{m_2-m_1}{m_1+m_2})u_2 + \frac{2m_1u_1}{m_1+m_2}...... (5) 

  •  Special cases of head on elastic collision 

  1. Equal mass in case of perfectly elastic collision

Then, v_{1}= u_{2} \: and \: v_{2}= u_{1}

Or, Velocity mutually interchange

  1.  If massive projectile collides with a light target  (i.e m_1>>m_2)

Since m_1>>m_2  so we use  m_2=0

Putting m_2=0 in equation (4) and (5) 

We get v_1 = u_1\ and \ v_2=\ 2u_1-u_2

  1. If target particle is massive in case of elastic collision  (i.e; m_2>>m_1)

Since m_2>>m_1 

So, the lighter particle recoil with same speed and the massive target particle remain practically at rest.

i.e;  \bar{v}_{2}=\bar u_2

                             \bar{v}_{1}=-\bar{u}_{1}

Perfectly elastic oblique collision
  • Let two bodies moving as shown in figure.

                                                         

By law of conservation of momentum

Along x-axis-

m_1u_1+m_2u_2 = m_1v_1cos\theta+m_2v_2cos\phi ….. (1)

Along y-axis-

0 = m_1v_1sin\theta-m_2v_2sin\phi                            …..(2)

By law of conservation of kinetic energy

                       \frac{1}{2}m_{1}u_{1}^{2}+\frac{1}{2}m_{2}u_{2}^{2}= \frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}       ….(3)

And In Perfectly Elastic Oblique Collision

Value of e=1 

So along line of impact (here along in the direction of v_2)

We apply e=1 

And  we get e=1=\frac{v_2-v_1cos(\theta+\phi)}{u_1cos\phi-u_2cos\phi}     ….. (4)

So we solve these  equations (1),(2),(3),(4) to get unknown.

  • Special condition

if\ m_1 = m_2\ and\ u_2 = 0

Then, from equation (1), (2) and (3)

We get,  \theta+\phi=\frac{\pi }{2}

i.e; after perfectly elastic oblique collision of two bodies of equal masses (if the second body is at rest), the scattering angle  \theta+\phi  would be  90^{0}.

Head on inelastic collision
  1. In Inelastic Collision Law of conservation of momentum hold good but kinetic energy is not conserved .

                                        

\frac{1}{2}m_{1}u_{1}^{2}+\frac{1}{2}m_{2}u_{2}^{2}\neq \frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}

                      m_{1}u_{1}+m_{2}u_{2}= m_{1}v_{1}+m_{2}v_2                  …… (1) 

m_{1},m_{2}: masses

u_{1},v_{1}: initial \: and \: final\: velocities\: of \: mass \: m_{1}

u_{2},v_{2}: initial \: and \: final\: velocities\: of \: mass \: m_{2}

 

  1. In inelastic collision  (0 < e < 1)

e = \frac{v_2-v_1}{u_1-u_2}            ….. (2)

From equations (1),(2) 

We get,

                v_1 = (\frac{m_1-em_2}{m_1+m_2})u_1+\frac{(1+e)m_2}{m_1+m_2}u_2 ……(3) 

Similarly,  v_2 = (\frac{m_2-em_1}{m_1+m_2})u_2+\frac{(1+e)m_1}{m_1+m_2}u_1...... (4) 


 

  1.  Special case

 A sphere of mass m moving with velocity u hits inelastically with another stationary sphere of same mass.

As,  e = \frac{v_2-v_1}{u_1-u_2}

So,  e = \frac{v_2-v_1}{u}    or,     ue = v_2-v_1                 ....(5) 

By conservation of momentum 

As,    m_{1}u_{1}+m_{2}u_{2}= m_{1}v_{1}+m_{2}

So  v_2+v_1 = u                                                         ….(6)

From equation (5) and (6)

We get,  \frac{v_1}{v_2} = \frac{1-e}{1+e}

  1. Loss in kinetic energy

Loss in K.E =  Total initial kinetic energy – Total final kinetic energy

\bigtriangleup K.E. = (\frac{1}{2}m_1u^2_1+\frac{1}{2}m_2u^2_2)-(\frac{1}{2}m_1v^2_1+\frac{1}{2}m_2v^2_2) …. (7)

 

From equation (3) , (4) and (7)

We can write, Loss in kinetic energy in terms of e as

\bigtriangleup K.E. = \frac{1}{2}(\frac{m_1m_2}{m_1+m_2})(1-e^2)(u_1-u_2)^2

 

 

Perfectly inelastic collision

In Perfectly Inelastic Collision -  Two bodies stick together after the collision ,so there will be a final common velocity (v)

 

  1. When the colliding bodies are moving in the same direction

  • By the law of conservation of momentum 

m_1u_1+m_2u_2=(m_1+m_2)v

v=\frac{m_1u_1+m_2u_2}{(m_1+m_2)}

  • Loss in kinetic energy

 

                                 \begin{aligned} \Delta K . E &=\left(\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}\right)-\left(\frac{1}{2}\left(m_{1}+m_{2}\right) V^{2}\right) \\ \Delta K . E &=\frac{1}{2}\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)\left(u_{1}-u_{2}\right)^{2} \end{aligned}

 

 

  1. When the colliding bodies are moving in the opposite direction

  • By the law of conservation of momentum 

\\ {m_{1} u_{1}+m_{2}\left(-u_{2}\right)=\left(m_{1}+m_{2}\right) v} \\ \\ {v=\frac{m_{1} u_{1}-m_{2} u_{2}}{m_{1}+m_{2}}}

If v is positive then the combined body will move along the direction of motion of mass m_1

If v is negative then the combined body will move in a direction opposite to the motion of mass m_1

  • Loss in kinetic energy

 

                                  \\ {\Delta K . E=\left(\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}\right)-\left(\frac{1}{2}\left(m_{1}+m_{2}\right) V^{2}\right)} \\ \\ {\Delta K . E=\frac{1}{2}\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right)\left(u_{1}+u_{2}\right)^{2}}

 

Collision Between Bullet and Vertically Suspended Block

A block of mass M suspended by vertical thread.

A bullet of mass m is fired horizontally with velocity u in the block.

                                                               

Let after the collision bullet gets embedded in block.

And, the combined system raised upto height h where the string makes an angle \theta  with the vertical. 

  1. Common velocity of system just after the collision (V)

Here, system is (block + bullet) 

                                     \\ {\text { P=momentum }} \\ \\ {P_{\text {bullet}}+P_{\text {block}}=P_{\text {system}}} \\ \\ {m u+0=(m+M) V} \\\\ {V=\frac{m u}{m+M}}                         .....(1)

  1. Initial velocity of the bullet in terms of h

By the conservation of mechanical energy

\\ {(T . E \text { of system }) \text { Just after collision }=(T . E \text { of system) At height } h} \\\\ {\frac{1}{2}(m+M) V^{2}=(m+M) g h} \\ \\ {V=\sqrt{2 g h}} \\ \\ {\text { Equating }(1) \text { and }(2)} \\ \\ {\text { We get } V=\sqrt{2 g h}=\frac{m u}{m+M}}

u=\left(\frac{m+M}{m}\right) \sqrt{2 g h}

  1. Loss in kinetic energy

Loss of kinetic energy in perfectly inelastic collision when (u_2=0,u_1=0) is given by

 

\Delta K . E=\frac{1}{2}\left(\frac{m M}{m+M}\right) u^{2}

  1. Value of angle \theta

\\ {\text { From } u=\left(\frac{m+M}{m}\right) \sqrt{2 g h}} \\\\ {\text { We can write }} \\\\ {h=\left(\frac{u^{2}}{2 g}\right)\left(\frac{m}{m+M}\right)^{2}} \\\\{\text { And from figure }} \\\\ Or,\ {\cos \theta=\frac{L-h}{L}=1-\frac{h}{L}=1-\left(\left(\frac{u^{2}}{2 g L}\right)\left(\frac{m}{m+M}\right)^{2}\right)}

Study it with Videos

Perfectly Elastic Head on Collision
Perfectly elastic oblique collision
Head on inelastic collision

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top