Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Diametric Form of a Circle is considered one the most difficult concept.
10 Questions around this concept.
Let ABCD and AEFG be squares of side 4 and 2 units, respectively. The point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :
Diametric Form of a Circle:
The equation of circle, when endpoints $\mathrm{A}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ and $\mathrm{B}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ of a diameter are given, is
$
\left(\mathrm{x}-\mathrm{x}_1\right)\left(\mathrm{x}-\mathrm{x}_2\right)+\left(\mathrm{y}-\mathrm{y}_1\right)\left(\mathrm{y}-\mathrm{y}_2\right)=0
$
Proof:
$P(x, y)$ is any point on the circle
$
\begin{aligned}
& \text { Slope of } \mathrm{AP}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{x}-\mathrm{x}_1} \\
& \text { Slope of } \mathrm{BP}=\frac{\mathrm{y}-\mathrm{y}_2}{\mathrm{x}-\mathrm{x}_2} \\
& \because \angle \mathrm{APB}=90^{\circ} \\
& \therefore \text { Slope of AP } \times \text { Slope of } \mathrm{BP}=-1 \\
& \Rightarrow\left(\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{x}-\mathrm{x}_1}\right) \times\left(\frac{\mathrm{y}-\mathrm{y}_2}{\mathrm{x}-\mathrm{x}_2}\right)=-1 \\
& \Rightarrow\left(\mathrm{x}-\mathrm{x}_1\right)\left(\mathrm{x}-\mathrm{x}_2\right)+\left(\mathrm{y}-\mathrm{y}_1\right)\left(\mathrm{y}-\mathrm{y}_2\right)=0
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"