VIT - VITEEE 2025
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Exception(Arrhenius Theory), Effective Activation Energy is considered one of the most asked concept.
184 Questions around this concept.
Two reactions R1 and R2 have identical pre-exponential factors. The activation energy of R1 exceeds that of R2 by 10 kJ mol−1. If k1 and k2 are rate constants for reactions R1 and R2 respectively at 300 K, then ln(k2/k1) is equal to :
(R=8.314 J mol−1K−1)
Rate constant K increases with
for a reaction, consider the plot of Int versus $1 / \mathrm{T}{\text {given in the figure. If the rate constant of }}$ reaction at 350 K is $10^{-4} \mathrm{~s}^{-1}$ then rate constant at 400 K is
New: JEE Main 2025 City Slip OUT; Download now | Preparation, Study Plan
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
Rate of a reaction can be expressed by Arrhenius equation as : . In this equation,
represents
Activation energy of a chemical reaction can be determined by _____________.
The pre-exponential factor in the Arrhenius equation of a first order reaction has the units
For a reaction, consider the plot of In k versus 1/T given in the figure. If the rate constant of this reaction at 400 K is 10-5 s-1 , then the rate constant at 500 K is :
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March
The rate of a reaction increases by 3 times when the temperature is raised from 300 K to 310 K. If K is the rate constant at 300 K, then the rate constant at 310 K will be equal to
A reaction has an activation energy of $209 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The rate increases 10 -fold when the temperature is increased from $27^{\circ} \mathrm{C}$ to $\mathrm{X}^{\circ} \mathrm{C}$. The temperature X is closest to [Gas constant, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ ]
In the respect of the equation in chemical kinetics, which one of the following statements is correct?
We know that on increasing the temperature, the rate of the reaction or rate constant increases.
The rate equation is given as follows:
Rate $=\mathrm{k}[\text { conc }]^{\mathrm{n}}$
Here k is the rate constant
Now, we will see the relation between k and T or also known as 'approximate dependency of k on T'.
Generally on 10oC rise in temperature, rate constant nearly doubles.
Temperature Coefficient: It is the ratio of two rate constants. Thus, mathematically it is given as:
$T_{\text {coeff }}=\frac{\mathrm{k}_{(\mathrm{t}+10)^{\circ} \mathrm{C}}}{\mathrm{k}_{\mathrm{t}^{\circ} \mathrm{C}}}$
Thus, the temperature coefficient is showing the dependency of the rate constant(k) on temperature(T).
NOTE: The standard value of the temperature coefficient is given at t = 25oC and (t+10) = 35oC.
The temperature dependence of the rate of a chemical reaction can be accurately explained by Arrhenius equation. It was first proposed by Dutch chemist, J.H. van’t Hoff but Swedish chemist, Arrhenius provided its physical justification and interpretation.
$\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$
where A is the Arrhenius factor or the frequency factor. It is also called pre-exponential factor. It is a constant specific to a particular reaction. R is gas constant and Ea is activation energy measured in joules/mole(J mol–1).
We have the rate constant K1 at temperature T1 and rate constant K2 at temperature T2.
We know that the Arrhenius equation is given as follows:
$
\log _{10} \mathrm{~K}_1=\log _{10} \mathrm{~A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT} \mathrm{~T}_1}
$
$
\log _{10} \mathrm{~K}_2=\log _{10} \mathrm{~A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}_2}
$
On subtracting equation (i) from (ii), we get:
$\log _{10} \mathrm{~K}_2-\log _{10} \mathrm{~K}_1=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}_1}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}_2}$
Thus, $\log \frac{\mathrm{K}_2}{\mathrm{~K}_1}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_1}-\frac{1}{\mathrm{~T}_2}\right]$
Although the Arrhenius equation explains the exact relationship between the rate of reaction and the temperature but there are still some exceptions in this theory. Actually, on increasing the temperature rate may decrease sometimes and may not follow Arrhenius equation. Following examples will illustrate these exceptions.
On the basis of mechanism, we have two types of reactions:
Simple or Elementary reaction
Complex Reaction
Important Facts:
This example will illustrate how to determine the rate law when the intermediate is involved in the rate-determining step.
$2 \mathrm{O}_3 \rightarrow 3 \mathrm{O}_2$
Mechanism
$\mathrm{O}_3 \rightleftharpoons \mathrm{O}_2+\mathrm{O}$
$K_1$ and $K_2$ are the forward and backward reaction constants respectively
$\mathrm{O}+\mathrm{O}_3 \rightarrow 2 \mathrm{O}_2$
$\mathrm{K}_3$ is the rate constant
In this case, step 1 is fast and step 2 is slow.
The rate law is given as follows:
rate $=\mathrm{K}_3[\mathrm{O}]^1\left[\mathrm{O}_3\right]^1$
We know from equilibrium theory that:
$
\begin{aligned}
& \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_1}{\mathrm{~K}_2}=\frac{\left[\mathrm{O}_2\right][\mathrm{O}]}{\left[\mathrm{O}_3\right]} \\
& {[\mathrm{O}]=\frac{\mathrm{K}_1\left[\mathrm{O}_3\right]}{\mathrm{K}_2\left[\mathrm{O}_2\right]}}
\end{aligned}
$
$
\text { Thus, rate }=\frac{\mathrm{K}_3 \cdot \mathrm{~K}_1}{\mathrm{~K}_2} \frac{\left[\mathrm{O}_3\right]\left[\mathrm{O}_3\right]}{\left[\mathrm{O}_2\right]}=\frac{\mathrm{K}_3 \cdot \mathrm{~K}_1}{\mathrm{~K}_2} \frac{\left[\mathrm{O}_3\right]^2}{\left[\mathrm{O}_2\right]}
$
Thus, Order $=2-1=1$
rate constant $=\frac{\mathrm{K}_3 \cdot \mathrm{~K}_1}{\mathrm{~K}_2}$
In this situation, B and C both are forming. These types of reactions are known as parallel reactions. Both these reactions are first order reactions with rate constants K1 and K2 respectively and half-lives as t(1/2)1 and t(1/2)2.
For these parallel reactions, we need to find:
We know that the rate equations are given as follows:
$\begin{aligned} & \mathrm{r}_1=\frac{-\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}_1[\mathrm{~A}] \\ & \mathrm{r}_2=\frac{-\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}_2[\mathrm{~A}]\end{aligned}$
Thus, overall rate of reaction is :
$
\frac{-\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}_1[\mathrm{~A}]+\mathrm{K}_2[\mathrm{~A}]=\left(\mathrm{K}_1+\mathrm{K}_2\right)[\mathrm{A}]
$
Thus, rate $=\left(\mathrm{K}_1+\mathrm{K}_2\right)[\mathrm{A}]^1$
Effective Rate Constant $\left(\mathrm{K}_{\mathrm{eff}}\right)=\left(\mathrm{K}_1+\mathrm{K}_2\right)$
Effective order of reaction $=1$
$\begin{aligned} \text { Now, effective half }- \text { life }\left(\mathrm{t}_{1 / 2}\right) & =\frac{0.693}{\mathrm{~K}_{\mathrm{eff}}}=\frac{0.693}{\mathrm{~K}_1+\mathrm{K}_2} \\ \Rightarrow & \frac{0.693}{\frac{0.693}{\left(\mathrm{t}_{1 / 2}\right)_1}+\frac{0.693}{\left(\mathrm{t}_{1 / 2}\right)_2}}\end{aligned}$
Thus, effective half life is given as :
$
\frac{1}{\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{eff}}}=\frac{1}{\left(\mathrm{t}_{1 / 2}\right)_1}+\frac{1}{\left(\mathrm{t}_{1 / 2}\right)_2}
$
NOTE: Effective activation energy, [A], [B], [C] with time (t) variation and % of [B] and % of [C] will be discussed in later concepts.
We know that Arrhenius equation is given as:
$\mathrm{K}=\mathrm{A} \cdot \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
$\mathrm{K}_{\mathrm{eff}}=\mathrm{K}_1+\mathrm{K}_2$
Thus, $\mathrm{A}_{\mathrm{eff}} \cdot \mathrm{e}^{-\mathrm{Ea}_{\mathrm{eff}} / \mathrm{RT}}=\mathrm{A}_1 \cdot \mathrm{e}^{-\mathrm{Ea}_1 / \mathrm{RT}}+\mathrm{A}_2 \cdot \mathrm{e}^{-\mathrm{Ea}_2 / \mathrm{RT}}$
Differentiate this equation with respect to temperature ' T '
Thus, we have:
$\mathrm{A}_{\mathrm{eff}} \cdot \mathrm{e}^{-\mathrm{Ea}_{\mathrm{eff}} / \mathrm{RT}}\left(\frac{+\mathrm{Ea}_{\mathrm{eff}}}{\mathrm{RT}^2}\right)=\mathrm{A}_1 \cdot \mathrm{e}^{-\mathrm{Ea}_1 / \mathrm{RT}}\left(\frac{+\mathrm{Ea}_1}{\mathrm{RT}^2}\right)+\mathrm{A}_2 \cdot \mathrm{e}^{-\mathrm{Ea}_2 / \mathrm{RT}}\left(\frac{+\mathrm{Ea}_2}{\mathrm{RT}^2}\right)$
$\mathrm{K}_{\mathrm{eff}} \mathrm{E}_{\mathrm{eff}}=\mathrm{K}_1 \mathrm{Ea}_1+\mathrm{K}_2 \mathrm{Ea}_2$
$\mathrm{E}_{\mathrm{eff}}=\left(\mathrm{K}_1 \mathrm{Ea}_1+\mathrm{K}_2 \mathrm{Ea}_2\right) / \mathrm{K}_{\mathrm{eff}}$
We know that the rate equations are given as follows:
$\begin{aligned} & \mathrm{r}_1=\frac{-\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}_1[\mathrm{~A}] \\ & \mathrm{r}_2=\frac{-\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}_2[\mathrm{~A}]\end{aligned}$
The overall rate of the reaction is:
$\frac{-\mathrm{dA}}{\mathrm{dt}}=\mathrm{K}_1[\mathrm{~A}]+\mathrm{K}_2[\mathrm{~A}]=\left(\mathrm{K}_1+\mathrm{K}_2\right)[\mathrm{A}]$
$\begin{aligned} & \Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=\left(\mathrm{K}_1+\mathrm{K}_2\right)[\mathrm{A}]^1 \\ & \Rightarrow \frac{\mathrm{dA}}{\mathrm{A}}=-\left(\mathrm{K}_1+\mathrm{K}_2\right) \mathrm{dt}\end{aligned}$
On integrating both sides of the above equation, we get:
$\begin{aligned} & \int_{\mathrm{A}_{\mathrm{o}}}^{\mathrm{A}} \frac{\mathrm{dA}}{\mathrm{A}}=-\int_0^{\mathrm{t}}\left(\mathrm{K}_1+\mathrm{K}_2\right) \mathrm{dt} \\ & \Rightarrow[\log \mathrm{A}]_{\mathrm{A}_{\mathrm{o}}}^{\mathrm{A}}=-\left(\mathrm{K}_1+\mathrm{K}_2\right)[\mathrm{t}]_0^t \\ & \Rightarrow \log \mathrm{~A}-\log \mathrm{A}_{\mathrm{o}}=-\mathrm{k}_{\mathrm{eff}} \mathrm{t} \\ & \Rightarrow \log \frac{\mathrm{A}}{\mathrm{A}_{\mathrm{o}}}=-\mathrm{k}_{\mathrm{eff}} \mathrm{t} \\ & \Rightarrow \frac{\mathrm{A}}{\mathrm{A}_0}=\mathrm{e}^{-\mathrm{k}_{\mathrm{eft}} \mathrm{t}}\end{aligned}$
Thus, $[\mathrm{A}]=\left[\mathrm{A}_{\mathrm{o}}\right] \mathrm{e}^{-\mathrm{k}_{\mathrm{eff}} \mathrm{t}}$ $\qquad$
Now, the rate equation for B can be given as follows:
$
\frac{\mathrm{dB}}{\mathrm{dt}}=\mathrm{k}_1[\mathrm{~A}]=\mathrm{k}_1\left[\mathrm{~A}_{\mathrm{o}}\right] \mathrm{e}^{-\left(\mathrm{k}_1+\mathrm{k}_2\right) \mathrm{t}}
$ ...........(From equation (I))
$\begin{aligned} & \Rightarrow \int_0^{\mathrm{B}} \mathrm{dB}=\int_0^{\mathrm{t}} \mathrm{k}_1\left[\mathrm{~A}_0\right] \mathrm{e}^{-\left(\mathrm{k}_1+\mathrm{k}_2\right) \mathrm{t}} \mathrm{dt} \\ & \text { Thus, }[\mathrm{B}]=\frac{\mathrm{k}_1 \mathrm{~A}_{\mathrm{o}}}{\mathrm{k}_1+\mathrm{k}_2}\left[1-\mathrm{e}^{-\left(\mathrm{k}_1+\mathrm{k}_2\right) \mathrm{t}}\right]\end{aligned}$
Similarly, [C] is given as follows:
$[\mathrm{C}]=\frac{\mathrm{k}_2 \mathrm{~A}_{\mathrm{o}}}{\mathrm{k}_1+\mathrm{k}_2}\left[1-\mathrm{e}^{-\left(\mathrm{k}_1+\mathrm{k}_2\right) \mathrm{t}}\right]$
"Stay in the loop. Receive exam news, study resources, and expert advice!"