Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
General equation of travelling is considered one of the most asked concept.
24 Questions around this concept.
The displacement y of a particle in a medium can be expressed as:
where t is in second and x in meter. The speed of the wave is:
The function f(x,t) represents the displacements y of the particle at t=0 and x=x'
$
y=f\left(x=x^{\prime}, t=0\right)=A \sin \left(k x^{\prime}\right)
$
k- propagation constant or angular wave number
A- Amplitude
For a given time, between position $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{x}^{\prime}$ the phase changes from 0 to $\mathrm{kx}^{\prime}$ similarly, $\mathrm{x}=0$ to $\mathrm{x}=\lambda$ the phase changes from 0 to $2 \pi$
$
\begin{aligned}
& x^{\prime} \rightarrow k x^{\prime} \\
& \lambda \rightarrow 2 \pi
\end{aligned}
$
$
k=\frac{2 \pi}{\lambda}
$
kx ' represents phase of wave at $\mathrm{x}=\mathrm{x}$ '
The disturbance travels on the strings towards along positive $x$-axis with a constant speed ' $v$ '. Thus, the displacement produced at the left end at time ' $t=0$ ', reaches the point ' $x$ ' at time ' $t=\left(x-x^{\prime}\right) / v '$.
As wave shape remains same for progressive wave, particle's displacement at $\mathrm{x}=\mathrm{x}^{\prime}, \mathrm{t}=0$ and $\mathrm{x}=\mathrm{x}^{\prime}+\mathrm{vt}, \mathrm{t}=\mathrm{t}$ are same
i.e., $y=f\left(x=x^{\prime}, t=0\right)$ is same as $y=f(x, t)$
Let's now write the equation in terms of the stationary coordinate x , where $\mathrm{x}^{\prime}=\mathrm{x}-\mathrm{vt}$
$
\begin{aligned}
& \quad y=f\left(x^{\prime}, 0\right)=f(x, t) \\
& \therefore y(x, t)=A \sin \left(k x^{\prime}\right)=A \sin (k(x-v t)) \\
& y(x, t)=A \sin (k(x-v t))=A \sin \left(\frac{2 \pi x}{\lambda}-\frac{2 \pi v t}{\lambda}\right)=A \sin (k x-\omega t) \\
& \quad v=f \lambda=\frac{\lambda}{T} \\
& T=\frac{2 \pi}{\omega}
\end{aligned}
$
$
y(x, t)=A \sin (k(x-v t))=A \sin \left(\frac{2 \pi x}{\lambda}-\frac{2 \pi t}{T}\right)=A \sin (k x-\omega t)
$
For wave travelling along negative $x$-axis,
$
y(x, t)=A \sin (k(x+v t))=A \sin \left(\frac{2 \pi x}{\lambda}+\frac{2 \pi t}{T}\right)=A \sin (k x+\omega t)
$
GENERAL EQUATION OF TRAVELLING WAVE
$
y(x, t)=A \sin (k(x \pm v t)+\phi)=A \sin \left(\frac{2 \pi x}{\lambda} \pm \frac{2 \pi t}{T}+\phi\right)=A \sin (k x \pm \omega t+\phi)
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"