How to Attempt IIT JEE Main and Advanced 2025 - Know success mantra from experts

Transcendental function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 36 Questions around this concept.

Solve by difficulty

Which one of the graphs corresponds to $f(x)=3^x$ if the four graphs are $2^x, 3^x, 4^x, 5^x $?

The graph of $y=\left ( \frac{1}{2} \right )^{x-2}$ is

The graph of  $y=e^{|x|}$ is

The graph of  $y=log\left ( x+1 \right )$ is

$\frac{1}{1+log_{a}bc}+\frac{1}{1+log_{b}ac}+\frac{1}{1+log_{c}ab}=$

$2\ log_{x}= log(16-6x)$ Find.

 

$4^{\log _5^9}+27^{\log _5^2}=9^{\log _2 19}$ Find x

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th July

$
\begin{aligned}
&\log m+\log \frac{m^2}{n}+\log \frac{m^3}{n^2}+\ldots . .+\log \frac{m^{10}}{n^9}=A \log m+B \log n\\
&\text { what is the value of } A+B \text { ? }
\end{aligned}
$

$\log 2=0.301 \log 3=0.477$ Find no. of digits in $2^{15} \times 3^9$

Best Public Engineering Institutes 2025
Discover the top public engineering colleges in India beyond IITs and NITs for 2025. Get insights on placements, eligibility, application process, and more in this comprehensive ebook.
Check Now

The value of   $4^{\log _29}$ is

Concepts Covered - 1

Transcendental function

Transcendental functions: the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function $f(x)$ such that $f(x)=a^x$ is known as an exponential function.

$
\begin{aligned}
& \text { base: } \quad a>0, a \neq 1 \\
& \text { domain : } x \in \mathbb{R} \\
& \text { range : } f(x)>0
\end{aligned}
$
 

Property: If $\mathrm{a}^{\mathrm{x}}=\mathrm{a}^{\mathrm{y}}$, then $\mathrm{x}=\mathrm{y}$
Logarithmic function: function $\mathrm{f}(\mathrm{x})$ such that $f(x)=\log _a(x)$ is called logarithmic function
base: $\quad \mathrm{a}>0, \mathrm{a} \neq 1$
domain : $x>0$
range : $\mathrm{f}(\mathrm{x}) \in \mathbb{R}$
         

                    If a > 1                                                                               If 0 < a < 1

Properties of Logarithmic Function

1. $\log _e(a b)=\log _e a+\log _e b$
2. $\log _{\mathrm{e}}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)=\log _{\mathrm{e}} \mathrm{a}-\log _{\mathrm{e}} \mathrm{b}$
3. $\log _e \mathrm{a}^{\mathrm{m}}=\mathrm{m} \log _{\mathrm{e}} \mathrm{a}$
4. $\log _{\mathrm{a}} \mathrm{a}=1$
5. $\log _{\mathrm{b}^{\mathrm{m}}} \mathrm{a}=\frac{1}{\mathrm{~m}} \log _{\mathrm{b}} \mathrm{a}$
6. $\log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$
7. $\log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{m}} \mathrm{a}}{\log _{\mathrm{m}} \mathrm{b}}$
8. $\mathrm{a}^{\log _{\mathrm{a}} \mathrm{m}}=\mathrm{m}$
9. $\mathrm{a}^{\log _c \mathrm{~b}}=\mathrm{b}^{\log _{\mathrm{c}} \mathrm{a}}$
10. $\log _{\mathrm{m}} \mathrm{a}=\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{m}^{\mathrm{b}}$

Study it with Videos

Transcendental function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top