JEE Main April Application Form 2026 (Out) - Registration Link, Steps to Apply Online

Transcendental function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 36 Questions around this concept.

Solve by difficulty

Which one of the graphs corresponds to $f(x)=3^x$ if the four graphs are $2^x, 3^x, 4^x, 5^x $?

The graph of $y=\left ( \frac{1}{2} \right )^{x-2}$ is

The graph of  $y=e^{|x|}$ is

The graph of  $y=log\left ( x+1 \right )$ is

$\frac{1}{1+log_{a}bc}+\frac{1}{1+log_{b}ac}+\frac{1}{1+log_{c}ab}=$

$2\ log_{x}= log(16-6x)$ Find.

 

$4^{\log _5^9}+27^{\log _5^2}=9^{\log _2 19}$ Find x

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Last Date to Apply: 28th Feb | Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

$
\begin{aligned}
&\log m+\log \frac{m^2}{n}+\log \frac{m^3}{n^2}+\ldots . .+\log \frac{m^{10}}{n^9}=A \log m+B \log n\\
&\text { what is the value of } A+B \text { ? }
\end{aligned}
$

$\log 2=0.301 \log 3=0.477$ Find no. of digits in $2^{15} \times 3^9$

JEE Main 2026 College Predictor
Discover your college admission chances with the JEE Main 2026 College Predictor. Explore NITs, IIITs, CFTIs and other institutes based on your percentile, rank, and details.
Try Now

The value of   $4^{\log _29}$ is

Concepts Covered - 1

Transcendental function

Transcendental functions: the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function $f(x)$ such that $f(x)=a^x$ is known as an exponential function.

$
\begin{aligned}
& \text { base: } \quad a>0, a \neq 1 \\
& \text { domain : } x \in \mathbb{R} \\
& \text { range : } f(x)>0
\end{aligned}
$
 

Property: If $\mathrm{a}^{\mathrm{x}}=\mathrm{a}^{\mathrm{y}}$, then $\mathrm{x}=\mathrm{y}$
Logarithmic function: function $\mathrm{f}(\mathrm{x})$ such that $f(x)=\log _a(x)$ is called logarithmic function
base: $\quad \mathrm{a}>0, \mathrm{a} \neq 1$
domain : $x>0$
range : $\mathrm{f}(\mathrm{x}) \in \mathbb{R}$
         

                    If a > 1                                                                               If 0 < a < 1

Properties of Logarithmic Function

1. $\log _e(a b)=\log _e a+\log _e b$
2. $\log _{\mathrm{e}}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)=\log _{\mathrm{e}} \mathrm{a}-\log _{\mathrm{e}} \mathrm{b}$
3. $\log _e \mathrm{a}^{\mathrm{m}}=\mathrm{m} \log _{\mathrm{e}} \mathrm{a}$
4. $\log _{\mathrm{a}} \mathrm{a}=1$
5. $\log _{\mathrm{b}^{\mathrm{m}}} \mathrm{a}=\frac{1}{\mathrm{~m}} \log _{\mathrm{b}} \mathrm{a}$
6. $\log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$
7. $\log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{m}} \mathrm{a}}{\log _{\mathrm{m}} \mathrm{b}}$
8. $\mathrm{a}^{\log _{\mathrm{a}} \mathrm{m}}=\mathrm{m}$
9. $\mathrm{a}^{\log _c \mathrm{~b}}=\mathrm{b}^{\log _{\mathrm{c}} \mathrm{a}}$
10. $\log _{\mathrm{m}} \mathrm{a}=\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{m}^{\mathrm{b}}$

Study it with Videos

Transcendental function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions