JEE Main Answer Key 2026 Session 1 (Feb 4): Download Link for Shift 1, 2 Key PDF

Transcendental function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 36 Questions around this concept.

Solve by difficulty

Which one of the graphs corresponds to $f(x)=3^x$ if the four graphs are $2^x, 3^x, 4^x, 5^x $?

The graph of $y=\left ( \frac{1}{2} \right )^{x-2}$ is

The graph of  $y=e^{|x|}$ is

New: JEE Main 2026 Session 2 Registration Starts; Apply Now

JEE Main 2026 Ques & Sol's: 28 Jan: Shift-2 | Shift-1 | All Shift (Session 1)

JEE Main 2026 Tools: Rank Predictor | College Predictor

Comprehensive Guide: IIT'sNIT'sIIIT's

The graph of  $y=log\left ( x+1 \right )$ is

$\frac{1}{1+log_{a}bc}+\frac{1}{1+log_{b}ac}+\frac{1}{1+log_{c}ab}=$

$2\ log_{x}= log(16-6x)$ Find.

 

$4^{\log _5^9}+27^{\log _5^2}=9^{\log _2 19}$ Find x

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

$
\begin{aligned}
&\log m+\log \frac{m^2}{n}+\log \frac{m^3}{n^2}+\ldots . .+\log \frac{m^{10}}{n^9}=A \log m+B \log n\\
&\text { what is the value of } A+B \text { ? }
\end{aligned}
$

$\log 2=0.301 \log 3=0.477$ Find no. of digits in $2^{15} \times 3^9$

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

The value of   $4^{\log _29}$ is

Concepts Covered - 1

Transcendental function

Transcendental functions: the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function $f(x)$ such that $f(x)=a^x$ is known as an exponential function.

$
\begin{aligned}
& \text { base: } \quad a>0, a \neq 1 \\
& \text { domain : } x \in \mathbb{R} \\
& \text { range : } f(x)>0
\end{aligned}
$
 

Property: If $\mathrm{a}^{\mathrm{x}}=\mathrm{a}^{\mathrm{y}}$, then $\mathrm{x}=\mathrm{y}$
Logarithmic function: function $\mathrm{f}(\mathrm{x})$ such that $f(x)=\log _a(x)$ is called logarithmic function
base: $\quad \mathrm{a}>0, \mathrm{a} \neq 1$
domain : $x>0$
range : $\mathrm{f}(\mathrm{x}) \in \mathbb{R}$
         

                    If a > 1                                                                               If 0 < a < 1

Properties of Logarithmic Function

1. $\log _e(a b)=\log _e a+\log _e b$
2. $\log _{\mathrm{e}}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)=\log _{\mathrm{e}} \mathrm{a}-\log _{\mathrm{e}} \mathrm{b}$
3. $\log _e \mathrm{a}^{\mathrm{m}}=\mathrm{m} \log _{\mathrm{e}} \mathrm{a}$
4. $\log _{\mathrm{a}} \mathrm{a}=1$
5. $\log _{\mathrm{b}^{\mathrm{m}}} \mathrm{a}=\frac{1}{\mathrm{~m}} \log _{\mathrm{b}} \mathrm{a}$
6. $\log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$
7. $\log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{m}} \mathrm{a}}{\log _{\mathrm{m}} \mathrm{b}}$
8. $\mathrm{a}^{\log _{\mathrm{a}} \mathrm{m}}=\mathrm{m}$
9. $\mathrm{a}^{\log _c \mathrm{~b}}=\mathrm{b}^{\log _{\mathrm{c}} \mathrm{a}}$
10. $\log _{\mathrm{m}} \mathrm{a}=\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{m}^{\mathrm{b}}$

Study it with Videos

Transcendental function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions