UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th April
36 Questions around this concept.
Which one of the graphs corresponds to $f(x)=3^x$ if the four graphs are $2^x, 3^x, 4^x, 5^x $?
The graph of $y=\left ( \frac{1}{2} \right )^{x-2}$ is
The graph of $y=e^{|x|}$ is
JEE Main Questions: April 8: Shift 2 | April 7: Shift 1 | Shift 2 | April 2, 3 & 4 (Shift 1 & 2)
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Percentile vs Rank
New: Meet Careers360 experts in your city
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
The graph of $y=log\left ( x+1 \right )$ is
$\frac{1}{1+log_{a}bc}+\frac{1}{1+log_{b}ac}+\frac{1}{1+log_{c}ab}=$
$2\ log_{x}= log(16-6x)$ Find.
$4^{\log _5^9}+27^{\log _5^2}=9^{\log _2 19}$ Find x
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th April
Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more
$
\begin{aligned}
&\log m+\log \frac{m^2}{n}+\log \frac{m^3}{n^2}+\ldots . .+\log \frac{m^{10}}{n^9}=A \log m+B \log n\\
&\text { what is the value of } A+B \text { ? }
\end{aligned}
$
$\log 2=0.301 \log 3=0.477$ Find no. of digits in $2^{15} \times 3^9$
The value of $4^{\log _29}$ is
Transcendental functions: the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.
Exponential Function: function $f(x)$ such that $f(x)=a^x$ is known as an exponential function.
$
\begin{aligned}
& \text { base: } \quad a>0, a \neq 1 \\
& \text { domain : } x \in \mathbb{R} \\
& \text { range : } f(x)>0
\end{aligned}
$
Property: If $\mathrm{a}^{\mathrm{x}}=\mathrm{a}^{\mathrm{y}}$, then $\mathrm{x}=\mathrm{y}$
Logarithmic function: function $\mathrm{f}(\mathrm{x})$ such that $f(x)=\log _a(x)$ is called logarithmic function
base: $\quad \mathrm{a}>0, \mathrm{a} \neq 1$
domain : $x>0$
range : $\mathrm{f}(\mathrm{x}) \in \mathbb{R}$
If a > 1 If 0 < a < 1
Properties of Logarithmic Function
1. $\log _e(a b)=\log _e a+\log _e b$
2. $\log _{\mathrm{e}}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)=\log _{\mathrm{e}} \mathrm{a}-\log _{\mathrm{e}} \mathrm{b}$
3. $\log _e \mathrm{a}^{\mathrm{m}}=\mathrm{m} \log _{\mathrm{e}} \mathrm{a}$
4. $\log _{\mathrm{a}} \mathrm{a}=1$
5. $\log _{\mathrm{b}^{\mathrm{m}}} \mathrm{a}=\frac{1}{\mathrm{~m}} \log _{\mathrm{b}} \mathrm{a}$
6. $\log _{\mathrm{b}} \mathrm{a}=\frac{1}{\log _{\mathrm{a}} \mathrm{b}}$
7. $\log _{\mathrm{b}} \mathrm{a}=\frac{\log _{\mathrm{m}} \mathrm{a}}{\log _{\mathrm{m}} \mathrm{b}}$
8. $\mathrm{a}^{\log _{\mathrm{a}} \mathrm{m}}=\mathrm{m}$
9. $\mathrm{a}^{\log _c \mathrm{~b}}=\mathrm{b}^{\log _{\mathrm{c}} \mathrm{a}}$
10. $\log _{\mathrm{m}} \mathrm{a}=\mathrm{b} \Rightarrow \mathrm{a}=\mathrm{m}^{\mathrm{b}}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"