NITs Cutoff 2025 for B.Tech Information Technology (Out) - Check Previous Year Cutoff here

Intersection of Set, Properties of Intersection - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Intersection of Set, Properties of Intersection is considered one of the most asked concept.

  • 48 Questions around this concept.

Solve by difficulty

Which of the following Venn Diagram shows $A\cap B\cap C \,'$  ?

Which of the following is the correct representation of the set $A \cap B$?

$(-3,4) \cap[0,5] \cap(5,7]$ equals

$
\phi \cap A=?
$
Where $\phi$ is a null set.

If $A=\{x: x \in N$ and $x<5\}$ then $A \cap A=B$ where $\mathrm{B}=$

Let A = {1,2,3} , B = {3,6} and C = {4,5,6,7} Then $A \cup (B\cap C  )   is$

What is the distributive property?

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

What is the Idempotent Law?

Which is the associative property of intersection?

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

Which of the following is a distributive property?

Concepts Covered - 1

Intersection of Set, Properties of Intersection

The intersection of sets $A$ and $B$ is the set of all elements which are common to both $A$ and $B$. The symbol ' $\cap$ 'is used to denote the intersection.

Symbolically, we write $A \cap B=\{x: x \in A$ and $x \in B\}$
For example, let $\mathrm{A}=\{2,4,6,8\}$ and $\mathrm{B}=\{2,3,5,8\}$, then $\mathrm{A} \cap \mathrm{B}=\{2,8\}$

If $A$ and $B$ are two sets such that $A \cap B=\varphi$, then $A$ and $B$ are called disjoint sets.
For example, let $A=\{2,4,6,8\}$ and $B=\{1,3,5,7\}$. Then $A$ and $B$ are disjoint sets because there are no elements which are common to A and B .

Properties of intersection
$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$ (Commutative law).
$(A \cap B) \cap C=A \cap(B \cap C)$ (Associative law).
$\mathrm{A} \cap \phi=\phi$,
$\mathrm{A} \cap \mathrm{U}=\mathrm{A}$ (Law of $\phi$ and U$)$.
$\mathrm{A} \cap \mathrm{A}=\mathrm{A}$ (Idempotent law)
If $A$ is subset of $B$, then $A \cap B=A$

Distributive laws

1. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ i. e., $\cap$ distributes over $\cup$

This can be seen easily from the following Venn diagrams

LHS:

    

RHS:

           

2. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

This can be seen easily from the following Venn diagrams

LHS:

         

RHS:

           

 

 

 

 

Study it with Videos

Intersection of Set, Properties of Intersection

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions