Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Piecewise function is considered one the most difficult concept.
21 Questions around this concept.
Find the details of the function [x] +[-x]
$[3.6]-[-2.2]+[5]=$ ? where $[$. $]$ stands for the greatest integer function.
$\operatorname{Sgn}(5)=$
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
Which function represents the following graph?
Signum function:
The function f : RR is defined by
$\operatorname{sgn}(\mathrm{x})=\left\{\begin{array}{ccc}1 & \text { if } & x>0 \\ -1 & \text { if } & x<0 \\ 0 & \text { if } & x=0\end{array}\right.$
is called the signum function. The domain of the signum function is R and the range is the set {-1,0,1}.
This function can also be written in another form:
$\operatorname{sgn}(x)=\left\{\begin{array}{c}\frac{|x|}{x}, x \neq 0 \\ 0, x=0\end{array}\right\}$
Graph:
Range $\in\{-1,0,1\}$
Greatest integer function (G.I.F.)
The function $f: R \rightarrow R$ defined by $f(x)=[x], x \in R$ assumes the value of the greatest integer which is equal to or less than $x$. Such a function is called the greatest integer function.
$
\begin{aligned}
& \mathrm{eg} ; \\
& {[1.75]=1} \\
& {[2.34]=2} \\
& {[-0.9]=-1} \\
& {[-4.8]=-5} \\
& {[4]=4} \\
& {[-1]=-1}
\end{aligned}
$
Graph:
From the definition of $[x]$, we can see that
$
\begin{aligned}
& {[x]=-1 \text { for }-1 \leq x<0} \\
& {[x]=0 \text { for } 0 \leq x<1} \\
& {[x]=1 \text { for } 1 \leq x<2} \\
& {[x]=2 \text { for } 2 \leq x<3 \text { and so on. }}
\end{aligned}
$
Properties of greatest integer function:
i) [ a ] = a (If a is an integer)
ii) $[[x]]=[x]$
iii) $x-1<[x] \leq x$
iv) $[x+a]=[x]+a \quad$ (If $a$ is an integer)
v) $[x-a]=[x]-a \quad$ (If $a$ is an integer)
vi) $[x]+[-x]=\left\{\begin{array}{ccc}0, & \text { if } & x \in Z \\ -1, & \text { if } x \notin Z & \end{array}\right.$
Fractional part function:
$
\{x\}=x-[x]
$
When [ x ] is the Greatest Integer Function
$
\begin{aligned}
& \mathrm{Eg} \\
& \{2.2\}=2.2-[2.2]=2.2-2=0.2 \\
& \{1.7\}=1.7-[1.7]=1.7-1=0.7 \\
& \{2\}=2-[2]=2-2=0 \\
& \{-2.2\}=-2.2-[-2.2]=2.2-(-3)=0.8 \\
& \{-1.7\}=-1.7-[-1.7]=1.7-(-2)=0.3 \\
& \{-2\}=-2-[-2]=2-(-2)=0
\end{aligned}
$
Clearly, $0 \leq\{x\}<1 \mid$
Graph
Domain: R
Range $\in[0,1)$
Properties of the fractional part of x
i) $\{x\}=x$ if $0 \leq x<1$
ii) $\{\mathrm{a}\}=0$, if a is an integer
iii) $0 \leq\{x\}<1$
iv) $\{x+a\}=\{x\} \quad$ (If $a$ is an integer)
v) $\{x\}+\{-x\}=1$, if $x$ doesn't belongs to integer
vi) $\{x\}+\{-x\}=0$, if $x$ belongs to integer
"Stay in the loop. Receive exam news, study resources, and expert advice!"