Careers360 Logo
NITs Cutoff 2025 for B.Tech Electronics and Communication Engineering

Piecewise function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Piecewise function is considered one the most difficult concept.

  • 18 Questions around this concept.

Solve by difficulty

If a\; \epsilon\; R  and the equation -3\left ( x-\left [ x \right ] \right )^{2}+2\left ( x-\left [ x \right ] \right )+a^{2}=0  (where \left [ x \right ]  denotes the greatest integer \leqslant x ) has no integral solution, then all possible values of a lie in the interval :

Concepts Covered - 1

Piecewise function

Signum function: 

The function f : R\small \rightarrowR defined by

\\\mathrm{sgn(x)= \left\{\begin{matrix} 1 &if &x>0 \\ -1 &if &x<0 \\ 0 &if &x=0 \end{matrix}\right.}

is called the signum function.  The domain of the signum function is R and the range is the set {-1,0,1}.

This function can also be written in another form:

\text{sgn}(x)= \begin{Bmatrix} \frac{\left | x \right |}{x},x\neq 0 & \\ 0,x=0& \end{Bmatrix}

Graph: 

\text{Range} \in \left \{ -1,0,1 \right \}


 

Greatest integer function (G.I.F.)

The function f: R \small \rightarrow R defined by f(x) = [x], x \small \in R assumes the  value of the greatest integer which is equal to or less than x. Such a functions is called the greatest integer function.

eg;

[1.75] = 1

[2.34] = 2

[-0.9] = -1

[-4.8] = -5

[4] = 4

[-1] = -1


Graph:

From the definition of [x], we

can see that

[x] = –1 for –1 \small \leq x < 0

[x] = 0 for 0 \small \leq x < 1

[x] = 1 for 1 \small \leq x < 2

[x] = 2 for 2 \small \leq x < 3 and so on.

 

Properties of greatest integer function:

i) [ a ] = a (If a is an integer)

ii) [[x]] = [x]

iii) x-1 < [x]  ≤ x

iv) [ x + a ] = [ x ] + a    (If a is an integer)

v) [ x - a ] = [ x ] - a    (If a is an integer)

vi) [x] + [-x] = \left\{\begin{matrix} 0, &if &x \in \,Z \\ -1, & if \,\,x \notin Z \end{matrix}\right.

 

 

Fractional part function:

\left \{ x \right \}=x-\left [ x \right ]

When [ x ]   is the Greatest Integer Function

Eg

{2.2} = 2.2 - [2.2] = 2.2 - 2 = 0.2

{1.7} = 1.7 - [1.7] = 1.7 - 1 = 0.7

{2} = 2 - [2] = 2 - 2 = 0

{ - 2.2} = -2.2 - [-2.2] = 2.2 - (-3) = 0.8

{ - 1.7} = -1.7 - [ - 1.7] = 1.7 - (-2) = 0.3

{ - 2} = - 2 - [-2] = 2 - ( - 2) = 0

Clearly , 0 ≤ {x} < 1

 

Graph

Domain: R

\text{Range }\in [ 0,1 )

 

Properties of fractional part of x

i) {x} = x if 0 ≤ x < 1

ii) {a} = 0, if a is an integer

iii) 0 ≤ {x} < 1

iv) { x + a } = {x}   ( If a is an integer) 

v) {x} + {-x} = 1, if x doesn’t belongs to integer

vi) {x} + {-x} = 0, if x belongs to integer

 

Study it with Videos

Piecewise function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top