Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Piecewise function is considered one the most difficult concept.
32 Questions around this concept.
Find the details of the function [x] +[-x]
If f(x) = [x] -x . Then the range of f(x) is
$[3.6]-[-2.2]+[5]=$ ? where $[$. $]$ stands for the greatest integer function.
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
$\operatorname{Sgn}(5)=$
Which function represents the following graph?

Solve $\operatorname{sgn}\left(\frac{x-1}{x}\right)>-1 .$
The graph $y=\left \{ 2x \right \}$ is
Signum function:
The function f : RR is defined by
$\operatorname{sgn}(\mathrm{x})=\left\{\begin{array}{ccc}1 & \text { if } & x>0 \\ -1 & \text { if } & x<0 \\ 0 & \text { if } & x=0\end{array}\right.$
is called the signum function. The domain of the signum function is R and the range is the set {-1,0,1}.
This function can also be written in another form:
$\operatorname{sgn}(x)=\left\{\begin{array}{c}\frac{|x|}{x}, x \neq 0 \\ 0, x=0\end{array}\right\}$
Graph:

Range $\in\{-1,0,1\}$
Greatest integer function (G.I.F.)
The function $f: R \rightarrow R$ defined by $f(x)=[x], x \in R$ assumes the value of the greatest integer which is equal to or less than $x$. Such a function is called the greatest integer function.
$
\begin{aligned}
& \mathrm{eg} ; \\
& {[1.75]=1} \\
& {[2.34]=2} \\
& {[-0.9]=-1} \\
& {[-4.8]=-5} \\
& {[4]=4} \\
& {[-1]=-1}
\end{aligned}
$
Graph:

From the definition of $[x]$, we can see that
$
\begin{aligned}
& {[x]=-1 \text { for }-1 \leq x<0} \\
& {[x]=0 \text { for } 0 \leq x<1} \\
& {[x]=1 \text { for } 1 \leq x<2} \\
& {[x]=2 \text { for } 2 \leq x<3 \text { and so on. }}
\end{aligned}
$
Properties of greatest integer function:
i) [ a ] = a (If a is an integer)
ii) $[[x]]=[x]$
iii) $x-1<[x] \leq x$
iv) $[x+a]=[x]+a \quad$ (If $a$ is an integer)
v) $[x-a]=[x]-a \quad$ (If $a$ is an integer)
vi) $[x]+[-x]=\left\{\begin{array}{ccc}0, & \text { if } & x \in Z \\ -1, & \text { if } x \notin Z & \end{array}\right.$
Fractional part function:
$
\{x\}=x-[x]
$
When [ x ] is the Greatest Integer Function
$
\begin{aligned}
& \mathrm{Eg} \\
& \{2.2\}=2.2-[2.2]=2.2-2=0.2 \\
& \{1.7\}=1.7-[1.7]=1.7-1=0.7 \\
& \{2\}=2-[2]=2-2=0 \\
& \{-2.2\}=-2.2-[-2.2]=2.2-(-3)=0.8 \\
& \{-1.7\}=-1.7-[-1.7]=1.7-(-2)=0.3 \\
& \{-2\}=-2-[-2]=2-(-2)=0
\end{aligned}
$
Clearly, $0 \leq\{x\}<1 \mid$
Graph

Domain: R
Range $\in[0,1)$
Properties of the fractional part of x
i) $\{x\}=x$ if $0 \leq x<1$
ii) $\{\mathrm{a}\}=0$, if a is an integer
iii) $0 \leq\{x\}<1$
iv) $\{x+a\}=\{x\} \quad$ (If $a$ is an integer)
v) $\{x\}+\{-x\}=1$, if $x$ doesn't belongs to integer
vi) $\{x\}+\{-x\}=0$, if $x$ belongs to integer
"Stay in the loop. Receive exam news, study resources, and expert advice!"
