Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships
26 Questions around this concept.
In van der Waals equation of state of the gas law, the constant b is a measure of
An ionic compound has a unit cell consisting of A ions at the corners of a cube and B ions on the centres of the faces of the cube. The empirical formula for this compound would be
Total volume of atoms present in a face-centred cubic unit cell of a metal is (r is atomic radius )
New: JEE Main 2025 Session 1 Result OUT; Check Now | Rank Predictor
JEE Main 2025: College Predictor | Marks vs Rank vs Percentile | Top NITs Cutoff
JEE Main 2025: January Session Official Question Paper for All Shifts | Exam Analysis
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of the total pressure exerted by oxygen is
Given below are the half reactions with their standard reduction potential at a temperature of . Compare those and select the correct option representing the decreasing order of reducing strength.
Directions: In the following questions, a statement of Assertion (A) is followed by a statement of reason (R).
Assertion: $\mathrm{Z}_{\mathrm{n}}$ metal can displace Ag metal from a solution containing the complex ion $\left[\mathrm{Ag}(\mathrm{CN})_2\right]$.
Reason: $\mathrm{E}_{\mathrm{zn}+2 / \mathrm{zn}}^0$ is greater than $\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag} .}$
Mark the correct choice as:
When a lead storage battery is discharged then
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 25th Feb
Which of the following complex solution is used for the electroplating of articles with silver?
$\mathrm{Li}^{+} / \mathrm{Li} $ | $\mathrm{Li}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Li}$ (s) | -3.04 |
${\mathrm{K}^{+} / \mathrm{K}}$ | $\mathrm{K}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{K}(\mathrm{s})$ | -2.93 |
$\mathrm{Ca}^{2+} / \mathrm{Ca}$ | $\mathrm{Ca}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ca}(\mathrm{s})$ | -2.87 |
$\mathrm{Na}^{+} / \mathrm{Na}$ | $\mathrm{Na}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Na}$ (s) | -2.71 |
$\mathrm{Mg}^{2+} / \mathrm{Mg}$ | $\mathrm{Mg}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(\mathrm{s})$ | -2.37 |
$\mathrm{Pt}, \mathrm{H}_2 / \mathrm{H}^{-}$ | $\mathrm{H}_2(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}^{-}$(aq.) | -2.25 |
$\mathrm{Al}^{3+} / \mathrm{Al}$ | $\mathrm{Al}^{3+}$ (aq.) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$ (s) | -1.66 |
$\mathrm{Mn}^{2+} / \mathrm{Mn}$ | $\mathrm{Mn}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}(\mathrm{s})$ | -0.91 |
$\mathrm{OH}^{-} / \mathrm{H}_2, \mathrm{Pt}$ | $2 \mathrm{H}_2 \mathrm{O}(\ell)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2(\mathrm{~g})+2 \mathrm{OH}^{-}$(aq. $)$ | -0.83 |
$\mathrm{Zn}^{2+} / \mathrm{Zn}$ | $\mathrm{Zn}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}$ (s) | -0.76 |
$\mathrm{Cr}^{3+} / \mathrm{Cr}$ | $\mathrm{Cr}^{3+}$ (aq. $)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Cr}(\mathrm{s})$ | -0.74 |
$\mathrm{Fe}^{2+} / \mathrm{Fe}$ | $\mathrm{Fe}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$ (s) | -0.44 |
$\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}, \mathrm{Pt}$ | $\mathrm{Cr}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cr}^{2+}$ (aq.) | -0.41 |
$\mathrm{Cd}^{2+} / \mathrm{Cd}$ | $\mathrm{Cd}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cd}(\mathrm{s})$ | -0.40 |
$\mathrm{Co}^{2+} / \mathrm{Co}$ | $\mathrm{Co}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Co}$ (s) | -0.28 |
$\mathrm{Ni}^{2+} / \mathrm{Ni}$ | $\mathrm{Ni}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(\mathrm{s})$ | -0.25 |
$\mathrm{I}^{-} / \mathrm{AgI} / \mathrm{Ag}$ | $\mathrm{AgI}(\mathrm{s})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{I}^{-}(\mathrm{aq}$. | -0.15 |
$\mathrm{Sn}^{2+} / \mathrm{Sn}$ | $\mathrm{Sn}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}$ (s) | -0.14 |
$\mathrm{Pb}^{2+} / \mathrm{Pb}$ | $\mathrm{Pb}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}$ (s) | -0.13 |
$\mathrm{Fe}^{3+} / \mathrm{Fe}$ | $\mathrm{Fe}^{3+}$ (aq.) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$ (s) |
-0.04 |
$\mathrm{H}^{+} / \mathrm{H}_2, \mathrm{Pt}$ | $2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2$ (g) | 0.00 |
$\mathrm{Br}^{-} / \mathrm{AgBr} / \mathrm{Ag}$ | $\mathrm{AgBr}(\mathrm{s})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Br}^{-}(\mathrm{aq}$. | 0.10 |
$\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}, \mathrm{Pt}$ | $\mathrm{Cu}^{2+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}$(aq.) | 0.16 |
$\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}, \mathrm{Pt}$ | $\mathrm{Sn}^{4+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}$ (aq.) | 0.15 |
$\mathrm{SO}_4^{2-}+\mathrm{H}_2 \mathrm{SO}_3$ | $\mathrm{SO}_4^{2-}(\mathrm{aq})+.4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2 \mathrm{SO}_3$ (aq. $)+\mathrm{H}_2 \mathrm{O}(\ell)$ | 0.17 |
$\mathrm{Cl}^{-} / \mathrm{AgCl} / \mathrm{Ag}$ | $\mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}$(aq.) | 0.22 |
$\mathrm{Cl}^{-} / \mathrm{Hg}_2 \mathrm{Cl}_2 / \mathrm{Hg}(\mathrm{Pt})$ | $\mathrm{Hg}_2 \mathrm{Cl}_2(\mathrm{~s})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Hg}(\ell)+2 \mathrm{Cl}^{-}($aq. $)$ | 0.27 |
$\mathrm{Cu}^{2+} / \mathrm{Cu}$ | $\mathrm{Cu}^{2+}$ (aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$ | 0.34 |
$\mathrm{Pt}, \mathrm{O}_2 / \mathrm{OH}^{-}$ | $\mathrm{O}_2$ (g) $+2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2 \mathrm{O}_2$ (aq.) | 0.40 |
$\mathrm{Cu}^{+} / \mathrm{Cu}$ | $\mathrm{Cu}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$ | 0.52 |
$\mathrm{I}_2 / \mathrm{I}^{-}, \mathrm{Pt}$ | $1 / 2 \mathrm{I}_2(\mathrm{~s})+\mathrm{e}^{-} \longrightarrow \mathrm{I}^{-}$(aq.) | 0.54 |
$\mathrm{Pt}, \mathrm{O}_2 / \mathrm{H}_2 \mathrm{O}_2$ | $\mathrm{O}_2(\mathrm{~g})+2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_2 \mathrm{O}_2$ (aq.) | 0.68 |
$\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}, \mathrm{Pt}$ | $\mathrm{Fe}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}$ (aq.) | 0.77 |
$\mathrm{Hg}_2^{2+} / \mathrm{Hg}(\mathrm{Pt})$ | $1 / 2 \mathrm{Hg}_2^{2+}$ (aq. $)+\mathrm{e}^{-} \longrightarrow \mathrm{Hg}(\mathrm{s})$ | 0.79 |
$\mathrm{Ag}^{+} / \mathrm{Ag}$ | $\mathrm{Ag}^{+}$(aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})$ | 0.80 |
$\mathrm{Hg}^{2+} / \mathrm{Hg}_2^{2+}$ | $2 \mathrm{Hg}^{2+}$ (aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Hg}_2^{2+}($ aq. $)$ | 0.92 |
$\mathrm{NO}_3^{-} / \mathrm{NO}, \mathrm{Pt}$ | $\mathrm{NO}_3^{-}+4 \mathrm{H}$ (aq. $)+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 0.97 |
$\mathrm{Pt}, \mathrm{Br}_2 / \mathrm{Br}^{-}$ | $\mathrm{Br}_2(\ell)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}$(aq.) | 1.09 |
$\mathrm{MnO}_2 / \mathrm{Mn}^{2+}$ | $\mathrm{MnO}_2(\mathrm{~s})+4 \mathrm{H}^{+}$(aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}$ (aq. $)+2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.23 |
$\mathrm{H}^{+} / \mathrm{O}_2 / \mathrm{Pt}$ | $\mathrm{O}_2(\mathrm{~g})+4 \mathrm{H}^{+}$(aq. $)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.23 |
$\mathrm{Cr}_2 \mathrm{O}_7^{2-} / \mathrm{Cr}^{3+}$ | $\mathrm{Cr}_2 \mathrm{O}_7^{2-}$ (aq.) $+14 \mathrm{H}^{+}$(aq.) $+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}$ (aq. $)+7 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.33 |
$\mathrm{Cl}_2 / \mathrm{Cl}^{-}$ | $1 / 2 \mathrm{Cl}_2(\mathrm{~g})+\mathrm{e}^{-} \longrightarrow \mathrm{Cl}^{-}$(aq.) | 1.36 |
$\mathrm{Au}^{3+} / \mathrm{Au}$ | $\mathrm{Au}^{3+}$ (aq. $)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Au}(\mathrm{s})$ | 1.40 |
$\mathrm{MnO}_4^{-} / \mathrm{Mn}^{2+}, \mathrm{H}^{+} / \mathrm{Pt}$ | $\mathrm{MnO}_4^{-}$(aq. $)+8 \mathrm{H}^{+}$(aq. $)+5 \mathrm{e} \longrightarrow \mathrm{Mn}^{2+}$ (aq. $)+4 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.52 |
$\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}, \mathrm{Pt}$ | $\mathrm{Ce}^{4+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ce}^{3+}$ (aq.) | 1.72 |
$\mathrm{H}_2 \mathrm{O}_2 / \mathrm{H}_2 \mathrm{O}$ | $\mathrm{H}_2 \mathrm{O}_2(\ell)+2 \mathrm{H}^{+}$(aq. $)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_2 \mathrm{O}(\ell)$ | 1.78 |
$\mathrm{Co}^{3+} / \mathrm{Co}^{2+}, \mathrm{Pt}$ | $\mathrm{Co}^{3+}$ (aq.) $+\mathrm{e}^{-} \longrightarrow \mathrm{Co}^{2+}$ (aq.) | 1.81 |
$\mathrm{O}_3 / \mathrm{O}_2$ | $\mathrm{O}_3$ (g) $+2 \mathrm{H}^{+}$(aq. $)+2 \mathrm{e}^{-} \longrightarrow \mathrm{O}_2$ (g) $+\mathrm{H}_2 \mathrm{O}(\ell)$ | 2.07 |
$\mathrm{Pt}, \mathrm{F}_2 / \mathrm{F}$ | $\mathrm{F}_2$ (g) $+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}$(aq.) | 2.87 |
Characteristics of Electrochemical Series
Metals with greater negative Eo (reduction) are strongly electropositive and have more reactivity. It means a lower placed element or metal is in the given series is less reactive is replaced by upper placed or higher element while higher element can be coated by lower metal.
Example, (i) $\mathrm{Zn}+\mathrm{CuSO}_4 \rightarrow \mathrm{ZnSO}_4+\mathrm{Cu}$
Here Cu is replaced by Zn due to more oxidation potential or reactivity of Zn, while Zn is coated by Cu. Zn- Cu couple is also coated by Cu. Here, the solution turns from blue to colorless and the rod becomes Reddish-brown from Gray white.
(ii) $\mathrm{Cu}+2 \mathrm{AgNO}_3 \rightarrow \mathrm{Cu}\left(\mathrm{NO}_3\right)_2+2 \mathrm{Ag}$
Here solution becomes colorless to blue and the rod becomes reddish-brown to white.
Increasing ease of deposition of some cations
$\mathrm{Li}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{+2}, \mathrm{Na}^{+}, \mathrm{Mg}^{+2}, \mathrm{Al}^{+3}, \mathrm{Zn}^{+2}, \mathrm{Fe}^{+2}, \mathrm{H}^{+}, \mathrm{Cu}^{+2}, \mathrm{Ag}^{+}, \mathrm{Au}^{+3}$
Increasing ease of discharge of some anion
$
\mathrm{SO}_4^{-2}<\mathrm{NO}_3^{-}<\mathrm{OH}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"