Careers360 Logo
JEE Main Online Test Series 2025: Free Practice Papers Here

Carnot Engine - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Carnot Engine is considered one of the most asked concept.

  • 43 Questions around this concept.

Solve by difficulty

Even the Carnot engine cannot give 100% efficiency because we cannot

In a Carnot engine, the temperature of the reservoir is 527C and that of the sink is 200 K . If the work by the engine when it transfers heat from the reservoir to sink is 12000 kJ, the quantity of heat absorbed by the engine from reservoir is_______×106 J.

 A Carnot engine absorbs 1000 J of heat energy from a reservoir at 1270C and rejects 600 J of heat energy during each cycle. The   efficiency of the engine and temperature of the sink will be :            

A Carnot engine, whose efficiency is 40%, takes in heat from a source maintained at a temperature of 500 K It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be

The Carnot engines A and B are operated in series. The first one, A recieves heat at T1 (=600K) and rejects to a reservoir at temperature T2. The second engine B recieves heat rejected by the first engine and in turn, rejects to a heat reservior at T3(=400K). Calculate the tempearture T2 ( in Kelvin) if work outputs of the two engines are equal:

An ideal gas heat engine operates in a Carnot cycle between 227C and 127C. It absorbs 6×104 J at high temperature. The amount of heat converted into work is:

Consider a cycle followed by an engine.

1 to 2 is isothermal

2 to 3 is adiabatic

3 to 1 is adiabatic

Such a process does not exist because

a) heat is completely converted to mechanical energy in such a process, which is not possible

b) mechanical energy is completely converted to heat in this process, which is not possible

c) curves representing two adiabatic processes don’t intersect

d) curves representing an adiabatic process and an isothermal process don’t intersect

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 18th May

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

The efficiency and work ratio of a simple gas turbine cycle are

Concepts Covered - 1

Carnot Engine
  • Carnot Engine-

          As shown in the below figure, It consists of the following parts

        

      1.A cylinder with perfectly non-conducting walls and a perfectly conducting base containing an ideal gas as working
         substance and fitted with a non-conducting frictionless piston.

      2. A source of infinite thermal capacity maintained at a constant higher temperature T1

     3. A sink of infinite thermal capacity maintained at a constant lower temperature T2

      4. A perfectly non-conducting stand for the cylinder.

  • Carnot cycle-

  As shown in the below figure, It consists of the following 4 processes.

 

1. Isothermal expansion (curve AB)

The cylinder containing ideal gas as working substance allowed to expand slowly at this constant temperature T1

So Work done = Heat absorbed by the system
W1=Q1=V1V2PdV=RT1loge(V2V1)= Area of ABGE
2. Adiabatic expansion (curve BC)

The cylinder is then placed on the non-conducting stand and the gas is allowed to expand adiabatically till the temperature falls from T1 to T2

W2=V2V3PdV=R(γ1)[T1T2]= Area of BCHG

3. Isothermal compression (curve CD)

The cylinder is placed on the sink and the gas is compressed at constant temperature T2.
Work done = Heat released by the system

W3=Q2=V3V4PdV=RT2logeV4V3=RT2logeV3V4= Area of CDFH

4. Adiabatic compression (curve DA)

Finally, the cylinder is again placed on a non-conducting stand and the compression is continued so that gas returns to its initial stage.

W4=V4V1PdV=Rγ1(T2T1)=Rγ1(T1T2)= Area of ADFE

- The efficiency of the Carnot cycle ( η )

The efficiency of the engine is defined as the ratio of work done to the heat supplied.

η= work done  Heat input =WQ1
 

Net work done during the complete cycle

W=W1+W2+(W3)+(W4) As W2=W4W=W1W3= Area of ABCDη=WQ1=W1W3W1=Q1Q2Q1=1W3W1=1Q2Q1


Putting the values we get

η=1RT2loge(V3/V4)RT1loge(V2/V1)


Since points, B and C lie on the same adiabatic curve

T1V2γ1=T2V3γ1 or T1T2=(V3V2)γ1


Also, point D and A lie on the same adiabatic curve

T1V1γ1=T2V4γ1 or T1T2=(V4V1)γ1


From the equation (2) and (3) we get

V3V2=V4V1 or V3V4=V2V1loge(V3V4)=loge(V2V1)


Put equation (4) in equation (1) we get
The efficiency of the Carnot engine as

η=1T2T1
 

   

 So η=WQ1=1T2T1

where

T1= Source temperature ,T2=Sink Temperature and (T1>T2)

and T1 and T2 are in kelvin
From the above formula, we can conclude that
1. The efficiency of a heat engine depends only on temperatures of source and sink and is independent of all other factors.
2. As a Carnot engine is the ideal engine, So no heat engine can be more efficient than Carnot engine.
3. All reversible heat engines working between same temperatures are equally efficient
4. Since T1>T2 So the efficiency of a Carnot engine is always lesser than unity.
- Carnot Theorem (The relation between Heat and Temperature in the Carnot cycle)
i.e Q1T1=Q2T2
where
Q1= Heat absorbed
Q2= Heat released
T2= Low temperature
T1= Higher Temperature

 

 

 

 

Study it with Videos

Carnot Engine

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top