Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
24 Questions around this concept.
The value of is.
${ }^{n} C_{1}-\frac{1}{2}{ }^{n} C_{2}+\frac{1}{3}{ }^{n} C_{3}-\ldots \ldots+(-1)^{n-1} \frac{1}{n}{ }^{n} C_{n}=$
The sum to $(n+1)$ terms of the following series $\frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\frac{C_3}{5}+\ldots \ldots$ is
If the numbers occur as the denominator of the binomial coefficient, then this method is applicable.
Working rule:
S. No. |
Conditions |
Limits of integration |
1 |
If the binomial series contains all positive sign terms |
0 to 1 |
2 |
If the binomial series contains alternate sign (+ and -) |
-1 to 0 |
3 |
If the binomial series contains odd coefficients (C0, C2, C4,.....) |
-1 to 1 |
4 |
If the binomial series contains even coefficients (C1, C3, C5,.....) |
subtract (2) from (1) then divide by 2 |
Note:
If in the denominator of a binomial coefficient product of two numerical, then integrate two times first times taken limits between 0 to x and second times take suitable limits.
Some Binomial Series using Integration
Example
$
C_0+2^2 \cdot \frac{C_1}{2}+2^3 \cdot \frac{C_2}{3}+\ldots+2^{n+1} \cdot \frac{C_n}{n+1}=\frac{3^{n+1}-1}{n+1}
$
Proof:
$
(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots .+C_n x^n
$
As each term has $+\operatorname{sign}$ and each term also has powers of 2, so we will integrate it from 0 to 2
$
\begin{aligned}
& \int_0^2(1+x)^n d x=\int_0^2\left[C_0+C_1 x+\ldots+C_n x^n\right] d x \\
& {\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^2=\left[C_0 x+C_1 \cdot \frac{x^2}{2}+C_2 \cdot \frac{x^3}{3}+\ldots C_n \cdot \frac{x^{n+1}}{n+1}\right]_0^2} \\
& \Rightarrow \quad \frac{3^{n+1}-1}{n+1}=C_0 \cdot 2+2^2 \cdot \frac{C_1}{2}+2^3 \cdot \frac{C_2}{3}+\ldots+2^{n+1} \cdot \frac{C_n}{n+1}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"