SRM NIRF Ranking 2024 - SRM Institute of Science and Technology

Use of Integration in Binomial - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 24 Questions around this concept.

Solve by difficulty

The value of C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots+\frac{C_{n}}{n+1} is.

${ }^{n} C_{1}-\frac{1}{2}{ }^{n} C_{2}+\frac{1}{3}{ }^{n} C_{3}-\ldots \ldots+(-1)^{n-1} \frac{1}{n}{ }^{n} C_{n}=$

The sum to $(n+1)$ terms of the following series $\frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\frac{C_3}{5}+\ldots \ldots$ is

Concepts Covered - 2

Use of Integration in Binomial - Part 1

If the numbers occur as the denominator of the binomial coefficient, then this method is applicable.

Working rule:

S. No.

Conditions

Limits of integration

1

If the binomial series contains all positive sign terms

0 to 1

2

If the binomial series contains alternate sign (+ and -)

-1 to 0

3

If the binomial series contains odd coefficients (C0, C2, C4,.....)

-1 to 1

4

If the binomial series contains even coefficients  (C1, C3, C5,.....)

    subtract (2) from (1) then divide by 2   

Note:

If in the denominator of a binomial coefficient product of two numerical, then integrate two times first times taken limits between 0 to x and second times take suitable limits.

Use of Integration in Binomial - Part 2

Some Binomial Series using Integration

Example

$
C_0+2^2 \cdot \frac{C_1}{2}+2^3 \cdot \frac{C_2}{3}+\ldots+2^{n+1} \cdot \frac{C_n}{n+1}=\frac{3^{n+1}-1}{n+1}
$
Proof:

$
(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots .+C_n x^n
$
As each term has $+\operatorname{sign}$ and each term also has powers of 2, so we will integrate it from 0 to 2

$
\begin{aligned}
& \int_0^2(1+x)^n d x=\int_0^2\left[C_0+C_1 x+\ldots+C_n x^n\right] d x \\
& {\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^2=\left[C_0 x+C_1 \cdot \frac{x^2}{2}+C_2 \cdot \frac{x^3}{3}+\ldots C_n \cdot \frac{x^{n+1}}{n+1}\right]_0^2} \\
& \Rightarrow \quad \frac{3^{n+1}-1}{n+1}=C_0 \cdot 2+2^2 \cdot \frac{C_1}{2}+2^3 \cdot \frac{C_2}{3}+\ldots+2^{n+1} \cdot \frac{C_n}{n+1}
\end{aligned}
$

Study it with Videos

Use of Integration in Binomial - Part 1
Use of Integration in Binomial - Part 2

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top