JEE Main Result 2025 Session 2 Paper 1 (Out) - Paper 2 Scorecard Soon at jeemain.nta.nic.in

Triple Angle Identities - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 20 Questions around this concept.

Solve by difficulty

If $\sin \frac{2 A}{3}=\frac{1}{6}$. Find the value of $\sin 2 A$

$\sin \left(40^{\circ}\right) \cdot \sin \left(20^{\circ}\right) \cdot \sin \left(80^{\circ}\right)=$

$If \tan A= \frac{1}{3}, find \tan 3A$

$\tan 3A-\tan 2A-\tan A$ is equal to

Concepts Covered - 1

Triple Angle Formula

Triple Angle Formula
1. $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^3 \mathrm{~A}$
2. $\cos 3 \mathrm{~A}=4 \cos ^3 \mathrm{~A}-3 \cos A$
3. $\tan 3 \mathrm{~A}=\frac{3 \tan \mathrm{~A}-\tan ^3 \mathrm{~A}}{1-3 \tan ^2 \mathrm{~A}}$

Proof:
These formulas can be derived from the addition formulas and double angle formula. For example, 3 A can be written as $(2 \mathrm{~A}+\mathrm{A})$ and then apply addition formula and double angle formulas to get the results.

$
\text { 1. } \begin{aligned}
\sin 3 A & =\sin (2 A+A)=\sin 2 A \cos A+\cos 2 A \sin A \\
& =2 \sin A \cos A \cdot \cos A+\left(1-2 \sin ^2 A\right) \sin A \\
& =2 \sin A \cos ^2 A+\sin A-2 \sin ^3 A \\
& =2 \sin A\left(1-\sin ^2 A\right)+\sin A-2 \sin ^3 A \\
& =2 \sin A-2 \sin ^3 A+\sin A-2 \sin ^3 A \\
& =3 \sin A-4 \sin ^3 A
\end{aligned}
$

$
\text { 2. } \begin{aligned}
\cos 3 A & =\cos (2 A+A)=\cos 2 A \cdot A \cos A-\sin 2 A \sin A \\
& =\left(2 \cos ^2 A-1\right) \cos A-2 \sin A \cos A \cdot \sin A \\
& =2 \cos ^3 A-\cos A-2 \cos A\left(1-\cos ^2 A\right) \\
& =2 \cos ^3 A-\cos A-2 \cos A+2 \cos ^3 A \\
& =4 \cos ^3 A-3 \cos A
\end{aligned}
$

3.

$
\begin{aligned}
\tan 3 A & =\frac{\sin 3 A}{\cos 3 A}=\frac{3 \sin A-4 \sin ^3 A}{4 \cos ^3 A-3 \cos A} \\
& =\frac{\sin \mathrm{A}\left(3-4 \sin ^2 \mathrm{~A}\right)}{\cos \mathrm{A}\left(4 \cos ^2 \mathrm{~A}-3\right)}=\frac{\tan \mathrm{A}\left(3-4 \sin ^2 \mathrm{~A}\right)}{4 \cos ^2 \mathrm{~A}-3}
\end{aligned}
$
On dividing numerator and denominator by $\cos ^2 A$,

$
\begin{aligned}
& =\frac{\tan \mathrm{A}\left(3 \sec ^2 \mathrm{~A}-4 \tan ^2 \mathrm{~A}\right)}{4-3 \sec ^2 \mathrm{~A}} \\
& =\frac{\tan \mathrm{A}\left(3+3 \tan ^2 \mathrm{~A}-4 \tan ^2 \mathrm{~A}\right)}{4-3-3 \tan ^2 \mathrm{~A}} \\
& =\frac{\tan \mathrm{A}\left(3-\tan ^2 \mathrm{~A}\right)}{1-3 \tan ^2 \mathrm{~A}}=\frac{3 \tan \mathrm{~A}-\tan ^3 \mathrm{~A}}{1-3 \tan ^2 \mathrm{~A}}
\end{aligned}
$

 

Study it with Videos

Triple Angle Formula

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Triple Angle Formula

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.11

Line : 43

E-books & Sample Papers

Get Answer to all your questions

Back to top