Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
6 Questions around this concept.
What is the relationship between gravitational field strength and gravitational potential?
If the gravitational potential at the point is zero, what is the value of the gravitational field strength?
Gravitational field and potential are related as
$
\vec{E}=-\frac{d V}{d r}
$
Where E is Gravitational field
And V is Gravitational potential
And r is the position vector
And Negative sign indicates that in the direction of intensity the potential decreases.
If $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$
Then
$
E_x=\frac{\delta V}{d x}, E_y=\frac{\delta V}{d y}, E_z=\frac{\delta V}{d z}
$
Proof-
Let gravitational field at a point $r$ due to a given mass distribution is E .
If a test mass $m$ is placed inside a uniform gravitational field $E$.
Then force on a particle $m$ when it is at r is $\vec{F}=m \vec{E}$ as shown in figure
As the particle is displaced from r to r + dr the
work done by the gravitational force on it is
$
d W=\vec{F} \cdot \vec{r}=m \vec{E} \cdot d \vec{r}
$
The change in potential energy during this displacement is
$
d U=-d W=-\vec{F} \cdot \vec{r}=-m \vec{E} \cdot d \vec{r}
$
And we know that Relation between Potential and Potential energy
As $U=m V$
$
\mathrm{So}^{d V}=\frac{d U}{m}=-\vec{E} \cdot d \vec{r}
$
Integrating between $r_1$, and $r_2$
We get
$
V\left(\overrightarrow{r_2}\right)-V\left(\overrightarrow{r_1}\right)=\int_{r_1}^{r_2}-\vec{E} \cdot d \vec{r}
$
If $r_1=r_0$, is taken at the reference point, $V\left(r_0\right)=0$.
Then the potential $\mathrm{V}\left(\mathrm{r}_2=\mathrm{r}\right)$ at any point r is
$
V(\vec{r})=\int_{r_0}^r-\vec{E} \cdot d \vec{r}
$
in Cartesian coordinates, we can write
$
\vec{E}=E_x \vec{i}+E_y \vec{j}+E_z \vec{k}
$
If $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$
Then $d \vec{r}=d x \vec{i}+d y \vec{j}+d z \vec{k}$
So
$
\begin{aligned}
& \vec{E} \cdot d \vec{r}=-d V=E_x d x+E_y d y+E_z d z \\
& d V=-E_x d x-E_y d y-E_z d z
\end{aligned}
$
If y and z remain constant, $\mathrm{dy}=\mathrm{dz}=0$
Thus $E_x=\frac{d V}{d x}$
Similarly
$
E_y=\frac{d V}{d y}, E_z=\frac{d V}{d z}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"