JEE Main Registration 2025 Session 1 (Open) - Link, Last Date, Fees, How to Apply

Kohlrausch's Law - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:35 AM | #JEE Main

Quick Facts

  • Kohlrausch's Law is considered one of the most asked concept.

  • 9 Questions around this concept.

Solve by difficulty

The molar conductivities \Lambda ^{\circ}{_{NaOAc}}\: and \: \Lambda ^{\circ}{_{HCl}}  at infinite dilution in water at 25^{\circ}C are 91.0 and 426.2 S cm2/mol  respectively. To calculate  \Lambda ^{\circ}{_{HOAc}}, the additional value required is

The equivalent conductances of two strong electrolytes at infinite dilution in \mathrm{H_{2}O} (where ions move freely through a solution ) at 25°C are given below:

\mathrm{ \Lambda ^{\circ}{_{CH_{3}COONa}}= 91.0 ~S cm^{2}/equiv.}

\mathrm{\Lambda ^{\circ}{_{HCl}}=426.2 S cm^{2}/equiv.}

What additional information/quantity one needs to calculate \Lambda ^{\circ} of an aqueous solution of acetic acid?

Concepts Covered - 1

Kohlrausch's Law

Kohlrausch examined Λor Λ values for a number of strong electrolytes and observed certain regularities. He noted that the difference in Λof the electrolytes NaX and KX for any X in nearly constant.
On the basis of these observations he introduced Kohlrausch law of Independent Migration of ions. The law states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte that is, at infinite dilution, the contribution of any ion towards equivalent conductance is constant; it does not depend upon presence of any ion.

\\\text {For any electrolyte: } \\\\ {\mathrm{P}_{\mathrm{X}} \mathrm{Q}_{\mathrm{Y}}\rightarrow \mathrm{XP}^{\mathrm{+Y} }+\mathrm{YQ}^{-\mathrm{X}}} \\\\ {\Lambda^{\circ}(P_XQ_Y)=\mathrm{X} \lambda^{\circ}_{P^{+Y}}+\mathrm{Y} \lambda^{\circ}_{Q^{-X}}} \\\\ \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}


\begin{array}{l} {\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\left(\lambda_{\mathrm{H^+}}^{\infty}+\lambda_{\mathrm{Cl^-}}^{\infty}\right)+\left(\lambda _{\mathrm{CH_3}\mathrm{COO}^{-}}^{\infty}+\lambda_{\mathrm{Na}^{+}}^{\infty}\right)} {-\left(\lambda_{\mathrm{Na}^{+}}^{\infty}-\lambda_{\mathrm{Cl^-}}^{\infty}\right)} \\\\ {=\Lambda_{\mathrm{HCl}}^{\infty}+\Lambda_{\mathrm{CH}, \mathrm{COONa}}^{\infty}-\Lambda_{\mathrm{NaCl}}^{\infty}}\end{array}

Application of Kohlrausch's Law

  • Determination of  \Lambda ^o_Mof a weak electrolyte:
    In the case of weak electrolytes, the degree of ionization increases which increases the value of Λm. However, it cannot be obtained by extrapolating the graph. The limiting value, Λm, for weak electrolytes can be obtained by Kohlrausch law.
     
  • To determine the degree of dissociation and equilibrium constant of weak electrolyte:
    \mathrm{CH}_{3} \mathrm{COOH}\rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\quad \mathrm{H}^{+}
              C                        0                             0
           C-C\alpha                    C\alpha                        C\alpha

    \begin{array}{l}{\text {Here } \mathrm{C}=\text { Initial concentration }} \\\\ {\alpha=\text { Degree of dissociation }} \\\\ {\alpha=\frac{\Lambda_M}{\Lambda^o_{\mathrm{M}}}}\end{array}

    \begin{array}{l}{\text { Here } \Lambda^{\circ} \text { or } \Lambda^{\infty}=\text { Molar conductance at infinite }} {\text {dilution or zero concentration. }}\end{array}

    \begin{array}{l}{\Lambda_{\mathrm{M}}=\text { Molar conductance at given conc. } \mathrm{C}} \\\\ {\mathrm{K}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}} \\\\ {\mathrm{K}=\frac{\mathrm{C} \alpha \cdot \mathrm{C} \alpha}{\mathrm{C}(1-\alpha)}}\end{array}

    \begin{array}{l}{\mathrm{K}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}} {=\frac{\mathrm{C} \cdot\left(\Lambda / \Lambda^o_{\mathrm{M}}\right)^{2}}{\left(1-\Lambda/ \Lambda^o_{\mathrm{M}}\right)^{2}}}{=\frac{\mathrm{C} \Lambda_M^{2}} {\Lambda^{\circ}\left(\Lambda^{\circ}-\Lambda_{\mathrm{m}}\right)}} \\\\ {\text {These are Ostwald's relations. }}\end{array}
     
  • To determine solubility of salt and Ksp:

             \mathrm{AgCl}(\mathrm{s})\rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}

            If the solubility of AgCl be M and the K and \Lambda ^o have values in S \ cm^{-1} and S \ cm^2mol^{-1}, then

  • \begin{array}{l}{\Lambda^{\circ}=\frac{1000 \mathrm{K}}{\mathrm{M}}} \\\\ {\Lambda^{\circ}=\lambda^{\circ} \mathrm{Ag}^{+}+\lambda^{\circ} \mathrm{Cl}^{-}} \\\\ {\mathrm{M}=\frac{1000 \mathrm{K}}{\Lambda^{\circ}}} \\\\ {\text {Here } \mathrm{M}=\text {Solubility of } \mathrm{AgCl}}\end{array}

    \begin{array}{l}{\text {Solubility product: }} \\\\ {\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-1}\right]} \\\\ {\text { As }\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Cl}^{-}\right]} \\\\ {\mathrm{Ksp}=\frac{1000 \mathrm{K}}{\Lambda^{\circ}} \times \frac{1000 \mathrm{K}}{\Lambda^{\circ}}} \\\\ {\mathrm{Ksp}=\left(1000 \mathrm{K} / \Lambda^{\circ}\right)^{2}}\end{array}

Study it with Videos

Kohlrausch's Law

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top