Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Electric potential due to continuous charge distribution(I) is considered one the most difficult concept.
19 Questions around this concept.
A half ring of radius R has a charge of $\lambda$ per unit length. The electric field at the center is $\left(k=\frac{1}{4 \pi \varepsilon_0}\right)$
Two identical thin rings each of radius R, are coaxially placed a distance R apart. If Q1 and Q2 are respectively the charges uniformly spread on the two rings, the work done in moving a charge q from the centre of one ring to that of the other is
Electric Potential due to uniformly charged ring
We want to find the electric potential at point P on the axis of the ring as of radius a, shown in the below figure
Total charge on ring: $Q$
Charge per unit length: $\lambda=Q / 2 \pi a$
Take a small elemental arc of charge dq
Charge on an arc: dq
$
\begin{aligned}
& d V=K \frac{d q}{r}=\frac{K d q}{\sqrt{x^2+a^2}} \\
& \text { So } \\
& V(x)=K \int \frac{d q}{\sqrt{x^2+a^2}}=\frac{K}{\sqrt{x^2+a^2}} \int d q=\frac{K Q}{\sqrt{x^2+a^2}}
\end{aligned}
$
- The potential at the center of the ring
$
V_c=\frac{K Q}{a}_{(\text {since } \mathrm{x}=0)}
$
- If $x>>a$
$
V=\frac{K Q}{x}
$
As x increases, V will decrease.
$
\text { As } x \rightarrow \infty, \quad V=0 .
$
So the maximum potential is at the centre of the ring.
Electric Potential due to uniformly charged Disc-
We want to find the electric potential at point P on the axis of the disk of radius R, as shown in the below figure
Total charge on ring: $Q$
Charge per unit Area: $\lambda=Q / \pi R^2$
Take a small elemental a ring of radius a having charge as dq
Area of ring: $2 \pi a d a$
Charge on ring: $d q=\sigma(2 \pi a d a)$
Charge on disk: $Q=\sigma\left(\pi R^2\right)$
$
\begin{aligned}
& d V=K \frac{d q}{\sqrt{x^2+a^2}}=2 \pi \sigma K \frac{a d a}{\sqrt{x^2+a^2}} \\
& V(x)=2 \pi \sigma K \int_0^R \frac{a d a}{\sqrt{x^2+a^2}}=2 \pi \sigma K\left[\sqrt{x^2+a^2}\right]_0^R=2 \pi \sigma K\left[\sqrt{x^2+R^2}-|x|\right]
\end{aligned}
$
We can also write
$
V(x)=\frac{\sigma}{2 \epsilon_0}\left[\sqrt{x^2+R^2}-|x|\right]
$
- The potential at the centre of the disc
$
V_c=\frac{2 K Q}{R}_{\text {(since } \mathrm{x}=0)}
$
- If $x>R$
$
\begin{aligned}
V(x) & =2 \pi \sigma K|x|\left[\sqrt{1+\frac{R^2}{x^2}}-1\right] \simeq 2 \pi \sigma K|x|\left[1+\frac{R^2}{2 x^2}-1\right]=\frac{K \sigma \pi R^2}{|x|} \\
\Rightarrow V(x) & =\frac{K Q}{|x|}
\end{aligned}
$
As $|\mathrm{x}|$ increases, V will decrease.
$
\text { As } \quad|x| \rightarrow \infty, \quad V=0
$
So the maximum potential is at the centre of the disc.
Electric Potential due to a finite uniform line of charge-
We want to find the potential due to a finite uniform line of positive charge at point P which is at a distance x from the rod on its perpendicular bisector, as shown in the below figure.
$\begin{aligned} & \lambda=\mathrm{Q} / 2 \mathrm{a} \quad \text { Uniform linear charge density } \\ & \mathrm{dQ}=\lambda \mathrm{dy} \text { Charge in length dy } \\ & \mathrm{dV}=\mathrm{k} \frac{\mathrm{d} \mathrm{Q}}{\mathrm{r}} \text { Potential of point charge } \\ & \mathrm{V}_{\mathrm{P}}=\int_{-\mathrm{a}}^{+\mathrm{a}} \mathrm{dV}=\mathrm{k} \lambda \int_{-\mathrm{a}}^{+\mathrm{a}} \frac{\mathrm{dv}}{\left(\mathbf{x}^2+\mathrm{y}^2\right)^{1 / 2}} \\ & \text { Using } \quad \int \frac{d y}{\left(x^2+y^2\right)^{1 / 2}}=\ln [y+r]=\ln \left[y+\left(x^2+y^2\right)^{1 / 2}\right] \\ & \quad \mathbf{v}_{\mathrm{P}}=\frac{\mathbf{k Q}}{\mathbf{2 a}} \ln \left[\frac{\left(\mathbf{x}^2+\mathbf{a}^2\right)^{1 / 2}+\mathbf{a}}{\left(\mathbf{x}^2+\mathbf{a}^2\right)^{1 / 2}-\mathbf{a}}\right]\end{aligned}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"