How Many Marks Required for IIT Delhi in JEE Advanced 2025

Electric Potential Of Uniformly Charged Ring, Rod, And Disc - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Electric potential due to continuous charge distribution(I) is considered one the most difficult concept.

  • 18 Questions around this concept.

Solve by difficulty

A half ring of radius R has a charge of $\lambda$ per unit length. The electric field at the center is $\left(k=\frac{1}{4 \pi \varepsilon_0}\right)$  

Concepts Covered - 1

Electric potential due to continuous charge distribution(I)

Electric Potential due to uniformly charged ring

We want to find the electric potential at point P on the axis of the ring as of radius a, shown in the below figure

Total charge on ring: $Q$
Charge per unit length: $\lambda=Q / 2 \pi a$

Take a small elemental arc of charge dq
Charge on an arc: dq

$
\begin{aligned}
& d V=K \frac{d q}{r}=\frac{K d q}{\sqrt{x^2+a^2}} \\
& \text { So } \\
& V(x)=K \int \frac{d q}{\sqrt{x^2+a^2}}=\frac{K}{\sqrt{x^2+a^2}} \int d q=\frac{K Q}{\sqrt{x^2+a^2}}
\end{aligned}
$

- The potential at the center of the ring

$
V_c=\frac{K Q}{a}_{(\text {since } \mathrm{x}=0)}
$

- If $x>>a$

$
V=\frac{K Q}{x}
$


As x increases, V will decrease.

$
\text { As } x \rightarrow \infty, \quad V=0 .
$

 

      So the maximum potential is at the centre of the ring.

 

Electric Potential due to uniformly charged Disc-

We want to find the electric potential at point P on the axis of the disk of radius R, as shown in the below figure

 

 

Total charge on ring: $Q$
Charge per unit Area: $\lambda=Q / \pi R^2$
Take a small elemental a ring of radius a having charge as dq
Area of ring: $2 \pi a d a$
Charge on ring: $d q=\sigma(2 \pi a d a)$
Charge on disk: $Q=\sigma\left(\pi R^2\right)$

$
\begin{aligned}
& d V=K \frac{d q}{\sqrt{x^2+a^2}}=2 \pi \sigma K \frac{a d a}{\sqrt{x^2+a^2}} \\
& V(x)=2 \pi \sigma K \int_0^R \frac{a d a}{\sqrt{x^2+a^2}}=2 \pi \sigma K\left[\sqrt{x^2+a^2}\right]_0^R=2 \pi \sigma K\left[\sqrt{x^2+R^2}-|x|\right]
\end{aligned}
$


We can also write

$
V(x)=\frac{\sigma}{2 \epsilon_0}\left[\sqrt{x^2+R^2}-|x|\right]
$

- The potential at the centre of the disc

$
V_c=\frac{2 K Q}{R}_{\text {(since } \mathrm{x}=0)}
$

- If $x>R$

$
\begin{aligned}
V(x) & =2 \pi \sigma K|x|\left[\sqrt{1+\frac{R^2}{x^2}}-1\right] \simeq 2 \pi \sigma K|x|\left[1+\frac{R^2}{2 x^2}-1\right]=\frac{K \sigma \pi R^2}{|x|} \\
\Rightarrow V(x) & =\frac{K Q}{|x|}
\end{aligned}
$
 

As $|\mathrm{x}|$ increases, V will decrease.

$
\text { As } \quad|x| \rightarrow \infty, \quad V=0
$

 

      So the maximum potential is at the centre of the disc.


Electric Potential due to a finite uniform line of charge-

We want to find the potential due to a finite uniform line of positive charge at point P which is at a distance x from the rod on its perpendicular bisector, as shown in the below figure.

 

$\begin{aligned} & \lambda=\mathrm{Q} / 2 \mathrm{a} \quad \text { Uniform linear charge density } \\ & \mathrm{dQ}=\lambda \mathrm{dy} \text { Charge in length dy } \\ & \mathrm{dV}=\mathrm{k} \frac{\mathrm{d} \mathrm{Q}}{\mathrm{r}} \text { Potential of point charge } \\ & \mathrm{V}_{\mathrm{P}}=\int_{-\mathrm{a}}^{+\mathrm{a}} \mathrm{dV}=\mathrm{k} \lambda \int_{-\mathrm{a}}^{+\mathrm{a}} \frac{\mathrm{dv}}{\left(\mathbf{x}^2+\mathrm{y}^2\right)^{1 / 2}} \\ & \text { Using } \quad \int \frac{d y}{\left(x^2+y^2\right)^{1 / 2}}=\ln [y+r]=\ln \left[y+\left(x^2+y^2\right)^{1 / 2}\right] \\ & \quad \mathbf{v}_{\mathrm{P}}=\frac{\mathbf{k Q}}{\mathbf{2 a}} \ln \left[\frac{\left(\mathbf{x}^2+\mathbf{a}^2\right)^{1 / 2}+\mathbf{a}}{\left(\mathbf{x}^2+\mathbf{a}^2\right)^{1 / 2}-\mathbf{a}}\right]\end{aligned}$

 

 

 

 

Study it with Videos

Electric potential due to continuous charge distribution(I)

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top