Careers360 Logo
NIT Puducherry Seat Matrix 2025 - Check Previous Year Matrix Here

Summation Of Series In Trigonometry - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 12 Questions around this concept.

Solve by difficulty

cos(40)cos(20)cos(80)=

Concepts Covered - 1

Trigonometric Series

Trigonometric Series

sin(α)+sin(α+β)+sin(α+2β)+sin(α+3β)++sin(α+(n1)β)=sin(nβ2)sin[α+(n1)β2]sin(β2)
Proof:
Let S=sinα+sin(α+β)+sin(α+2β)++sin(α+n1β)
Here angle are in A.P. and common difference of angles =β multiplying both side by 2sinβ2 we get,

2Ssinβ2=2sinαsinβ2+2sin(α+β)sinβ2++2sin(α+n1β)sinβ2 Now, 2sinαsinβ2=cos(αβ2)cos(α+β2)2sin(α+β)sinβ2=cos(α+β2)cos(α+3β2)2sin(α+2β)sinβ2=cos(α+3β2)cos(α+ββ2)2sin(α+n1β)sinβ2=cos[α+(2n3)β2]cos[α(2n1)β2]

Adding all the above we get

2sinβ2 S=cos(αβ2)cos(α+(2n1)β2) or 2sinβ2 S=2sin(α+(n1)β2)sinnβ2 S=sin(α+(n1)β2)sinnβ2sinβ2
For cosine series

cosα+cos(α+β)+cos(α+2β)++cos(α+n1β)=sinnβ2sinβ2cos[α+(n1)β2]

Study it with Videos

Trigonometric Series

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Trigonometric Series

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 3.23

Line : 9

E-books & Sample Papers

Get Answer to all your questions

Back to top