Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
24 Questions around this concept.
If $a+b \sqrt{2}+c \sqrt{3}=2-3 \sqrt{2}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}\in \mathrm{Q}$, then $\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals
If $a+b \sqrt{2}=2-3 \sqrt{4}$ and $\mathrm{a}, \in\mathrm{b}$ Q then $\mathrm{a}+\mathrm{b}$ equals
We consider the algebraic inequalities of the following types
$\begin{aligned} & \frac{p(x)}{q(x)}<0, \frac{p(x)}{q(x)}>0 \\ & \frac{p(x)}{q(x)} \leq 0, \frac{p(x)}{q(x)} \geq 0\end{aligned}$
If p(x) and q(x) can be resolved in factor then we can solve these types of inequalities using a wavy curved method otherwise we use the following method to solve them.
$
\text { (1) } \begin{aligned}
& \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})} \\
\Rightarrow & >0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x})>0 \\
\mathrm{p}(\mathrm{x}) & >0, \mathrm{q}(\mathrm{x})>0 \text { or } \mathrm{p}(\mathrm{x})<0, \mathrm{q}(\mathrm{x})<0
\end{aligned}
$
(2)
$
\begin{aligned}
& \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})}<0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x})<0 \\
\Rightarrow & \mathrm{p}(\mathrm{x})>0, \mathrm{q}(\mathrm{x})<0 \text { or } \mathrm{p}(\mathrm{x})<0, \mathrm{q}(\mathrm{x})>0
\end{aligned}
$
(3)
$
\begin{aligned}
& \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})} \geq 0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x}) \geq 0 \text { and } \mathrm{q}(\mathrm{x}) \neq 0 \\
& \Rightarrow \mathrm{p}(\mathrm{x}) \geq 0, \mathrm{q}(\mathrm{x})>0 \text { or } \mathrm{p}(\mathrm{x}) \leq 0, \mathrm{q}(\mathrm{x})<0
\end{aligned}
$
$
\text { (4) } \begin{aligned}
& \frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})} \leq 0 \Rightarrow \mathrm{p}(\mathrm{x}) \mathrm{q}(\mathrm{x}) \leq 0 \text { and } \mathrm{q}(\mathrm{x}) \neq 0 \\
\Rightarrow \mathrm{p}(\mathrm{x}) & \geq 0, \mathrm{q}(\mathrm{x})<0 \text { or } \mathrm{p}(\mathrm{x}) \leq 0, \mathrm{q}(\mathrm{x})>0
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"