200 Marks in JEE Mains Percentile 2025 - Expected Percentile and Rank

Multiple Angles - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Multiple angles in terms of arctan and arccos is considered one the most difficult concept.

  • 20 Questions around this concept.

Solve by difficulty

Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying $\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$ is :

Concepts Covered - 4

Multiple angles in terms of arcsin

Multiple angles in terms of arcsin
1. $2 \sin ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & \frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\ \pi-\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & x>\frac{1}{\sqrt{2}} \\ -\pi-\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & x<-\frac{1}{\sqrt{2}}\end{array}\right.$
2. $3 \sin ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\sin ^{-1}\left(3 x-4 x^3\right), & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ \pi-\sin ^{-1}\left(3 x-4 x^3\right), & x>\frac{1}{2} \\ -\pi-\sin ^{-1}\left(3 x-4 x^3\right) & x:-\frac{1}{2}\end{array}\right.$

Multiple angles in terms of arccos

Multiple angles in terms of arccos
1. $2 \cos ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\cos ^{-1}\left(2 x^2-1\right), & \text { if } 0 \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(2 x^2-1\right), & \text { if }-1 \leq x \leq 0\end{array}\right.$
2. $3 \cos ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\cos ^{-1}\left(4 x^3-3 x\right), & \text { if } \frac{1}{2} \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(4 x^3-3 x\right), & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 2 \pi+\cos ^{-1}\left(4 x^3-3 x\right), & \text { if }-1 \leq x \leq-\frac{1}{2}\end{array}\right.$

Multiple angles in terms of arctan and arcsin

Multiple angles in terms of arctan and arcsin

$
2 \tan ^{-1} \mathrm{x}=\left\{\begin{array}{cc}
\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if }-1 \leq x \leq 1 \\
\pi-\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if } x>1 \\
-\pi-\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if } x<-1
\end{array}\right.
$

Multiple angles in terms of arctan and arccos

Multiple angles in terms of arctan and arccos

$
2 \tan ^{-1} \mathrm{x}=\left\{\begin{array}{cl}
\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text { if } 0 \leq x<\infty \\
-\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text { if }-\infty<x \leq 0
\end{array}\right.
$

Study it with Videos

Multiple angles in terms of arcsin
Multiple angles in terms of arccos
Multiple angles in terms of arctan and arcsin

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Multiple angles in terms of arcsin

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.26

Line : 17

Multiple angles in terms of arccos

Mathematics for Joint Entrance Examination JEE (Advanced) : Trigonometry

Page No. : 7.26

Line : 42

E-books & Sample Papers

Get Answer to all your questions

Back to top