Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Multiple angles in terms of arctan and arccos is considered one the most difficult concept.
21 Questions around this concept.
Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying $\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$ is :
Multiple angles in terms of arcsin
1. $2 \sin ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & \frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\ \pi-\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & x>\frac{1}{\sqrt{2}} \\ -\pi-\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & x<-\frac{1}{\sqrt{2}}\end{array}\right.$
2. $3 \sin ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\sin ^{-1}\left(3 x-4 x^3\right), & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ \pi-\sin ^{-1}\left(3 x-4 x^3\right), & x>\frac{1}{2} \\ -\pi-\sin ^{-1}\left(3 x-4 x^3\right) & x:-\frac{1}{2}\end{array}\right.$
Multiple angles in terms of arccos
1. $2 \cos ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\cos ^{-1}\left(2 x^2-1\right), & \text { if } 0 \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(2 x^2-1\right), & \text { if }-1 \leq x \leq 0\end{array}\right.$
2. $3 \cos ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\cos ^{-1}\left(4 x^3-3 x\right), & \text { if } \frac{1}{2} \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(4 x^3-3 x\right), & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 2 \pi+\cos ^{-1}\left(4 x^3-3 x\right), & \text { if }-1 \leq x \leq-\frac{1}{2}\end{array}\right.$
Multiple angles in terms of arctan and arcsin
$
2 \tan ^{-1} \mathrm{x}=\left\{\begin{array}{cc}
\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if }-1 \leq x \leq 1 \\
\pi-\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if } x>1 \\
-\pi-\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if } x<-1
\end{array}\right.
$
Multiple angles in terms of arctan and arccos
$
2 \tan ^{-1} \mathrm{x}=\left\{\begin{array}{cl}
\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text { if } 0 \leq x<\infty \\
-\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text { if }-\infty<x \leq 0
\end{array}\right.
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"