UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Multiple angles in terms of arctan and arccos is considered one the most difficult concept.
20 Questions around this concept.
Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying $\tan ^{-1}(x)+\tan ^{-1}(2 x)=\frac{\pi}{4}$ is :
Multiple angles in terms of arcsin
1. $2 \sin ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & \frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}} \\ \pi-\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & x>\frac{1}{\sqrt{2}} \\ -\pi-\sin ^{-1}\left(2 x \sqrt{1-x^2}\right), & x<-\frac{1}{\sqrt{2}}\end{array}\right.$
2. $3 \sin ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\sin ^{-1}\left(3 x-4 x^3\right), & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ \pi-\sin ^{-1}\left(3 x-4 x^3\right), & x>\frac{1}{2} \\ -\pi-\sin ^{-1}\left(3 x-4 x^3\right) & x:-\frac{1}{2}\end{array}\right.$
Multiple angles in terms of arccos
1. $2 \cos ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\cos ^{-1}\left(2 x^2-1\right), & \text { if } 0 \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(2 x^2-1\right), & \text { if }-1 \leq x \leq 0\end{array}\right.$
2. $3 \cos ^{-1} \mathrm{x}=\left\{\begin{array}{cc}\cos ^{-1}\left(4 x^3-3 x\right), & \text { if } \frac{1}{2} \leq x \leq 1 \\ 2 \pi-\cos ^{-1}\left(4 x^3-3 x\right), & \text { if }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 2 \pi+\cos ^{-1}\left(4 x^3-3 x\right), & \text { if }-1 \leq x \leq-\frac{1}{2}\end{array}\right.$
Multiple angles in terms of arctan and arcsin
$
2 \tan ^{-1} \mathrm{x}=\left\{\begin{array}{cc}
\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if }-1 \leq x \leq 1 \\
\pi-\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if } x>1 \\
-\pi-\sin ^{-1}\left(\frac{2 x}{1+x^2}\right), & \text { if } x<-1
\end{array}\right.
$
Multiple angles in terms of arctan and arccos
$
2 \tan ^{-1} \mathrm{x}=\left\{\begin{array}{cl}
\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text { if } 0 \leq x<\infty \\
-\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right), & \text { if }-\infty<x \leq 0
\end{array}\right.
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"