JEE Main Admit Card 2025 Session 2 Out Soon - Release Date, Download Link at jeemain.nta.nic.in

Introduction Of Combinations - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • INTRODUCTION OF COMBINATIONS is considered one the most difficult concept.

  • 199 Questions around this concept.

Solve by difficulty

The value of \sum_{r=1}^{15}r^{2}\, \left ( \frac{{}^{15}\textrm{C}_{r}}{{}^{15}\textrm{C}_{r-1}} \right ) is equal to:

n is selected from the set {1,2,3......49} and the number 2n+3n+5n is formed. Total number of ways of selecting n so that the formed number is divisible by 4 is equal to

If \mathrm{ n C r: n C r+1=1: 4} and \mathrm{ n C r+1: n C r+2=4: 5}, determine the values of n and r.

${ }^{n-1} C_r=\left(k^2-8\right)^n C_{r+1}$ if and only if:

 

Let $\alpha=\frac{(4 !) !}{(4 !)^{3 !}}$ and $\beta=\frac{(5 !) !}{(5 !)^{4 !}}$ Then :

The number of ways in which 21 identical apples can be distributed among three children such that each child gets at least 2 apples, is

A bag contains 4 red balls, 3 green balls, and 2 blue balls. If you randomly select 3 balls from the bag without replacement, what is the number of possible outcomes?

VIT - VITEEE 2025

National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March

A bag contains 4 red marbles, 3 blue marbles, and 2 green marbles. If you randomly select 2 marbles from the bag without replacement, what is the number of possible outcomes?

A bakery offers 4 types of cupcakes: chocolate, vanilla, strawberry, and lemon. If a customer wants to choose 2 cupcakes for a special offer, how many different combinations of cupcakes can they select?

 

JEE Main 2025 - 10 Full Mock Test
Aspirants who are preparing for JEE Main can download JEE Main 2025 mock test pdf which includes 10 full mock test, high scoring chapters and topics according to latest pattern and syllabus.
Download EBook

A box contains 3 white, 4 black, and 5 red balls. In how many ways can 3 balls be drawn from the box, if at least one black ball is to be included in the draw?

Concepts Covered - 1

INTRODUCTION OF COMBINATIONS

So far our task was always to “arrange” objects i.e. to place them in a specific order among themselves.

Sometimes we would be interested in only “selecting” a few objects out of the given objects. In this case, we just need to “select” and we do not need to “arrange” them in an order. 

E.g., we need to select 4 students out of the 15 students who will represent the college at a quiz or we need to form an academic committee of 3 professors from 10 professors. In this case, who is selected “first”, who is selected “second” and so on does not matter. The words “first” and “second” implicitly imply an “ordering”. What matters in the case of selection is only the composition of the final “group”. 

The notation of selecting r objects from n given object is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$. Let’s derive the value of ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$., and its relation with permutation notation.

Let's say we want to arrange 2 objects out of 5 objects: A, B, C, D, and E then using the concept of permutation we can do this in ${ }^5 \mathrm{P}_2$ ways.

We can calculate the same thing by another method: by selecting 2 things out of 5, which can be done as \mathrm{^5C_2} , and then arranging the 2 selected things which can be done in 2! ways. So we have 

$
\begin{aligned}
& { }^5 \mathrm{C}_2 \times 2!={ }^5 \mathrm{P}_2 \\
& { }^5 \mathrm{C}_2=\frac{{ }^5 \mathrm{P}_2}{2!} \\
& { }^5 \mathrm{C}_2=\frac{5!}{(5-2)!2!}=\frac{5!}{3!2!}
\end{aligned}
$

We can generalize this concept for $r$ object to be selected from given $n$ objects as
$
\begin{aligned}
& { }^n C_r \times r!={ }^n P_r \\
& { }^n C_r=\frac{{ }^n P_r}{r!} \\
& { }^n C_r=\frac{n!}{(n-r)!r!}
\end{aligned}
$

Where $0 \leq r \leq n$, and $r$ is a whole number.
Now we have the value of ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$.

 

Study it with Videos

INTRODUCTION OF COMBINATIONS

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top