UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
77 Questions around this concept.
In an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the:
From a point on the circle $x^2+y^2=1$, two tangents are drawn to the ellipse $a x^2+b y^2=1$. The locus of the midpoint of their chord of contact is $\left(\mathrm{ax}^2+\mathrm{by}^2\right)^2=\mathrm{k}\left(\mathrm{x}^2+\mathrm{y}^2\right)$, where $\mathrm{k}=$
A tangent to the ellipse meets the ellipse
at P and Q. The tangents at P and Q to the ellipse
are making an angle:
If any tangent to the ellipse intercepts equal lengths l on the axes, then l=
The locus of the point of intersection of the perpendicular tangents to the ellipse is
Equation of tangents to ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$, which are perpendicular to the line $3 \mathrm{x}+$ $4 y=-7$
If tangents are drawn to the ellipse $x^{2}+2y^{2}=2$ at all points on the ellipse other than its four vertices then the midpoints of the tangents intercepted between the coordinate axes lie on the curve :
A line intersects the ellipse at P and Q and the parabola
at R and S. The line segment PQ subtends a right angle at the centre of the ellipse. The locus of the point of intersection of the tangents to the parabola at R and S is
, where
The minimum area of a triangle formed by any tangent to the ellipse $\mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}$ with the coordinate axis is
Write the parametric form of the ellipse:
$\frac{x^2}{9}+\frac{y^2}{4}=1$
Equation of Tangent of Ellipse in Point Form:
The equation of tangent to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ at point $\left(x_1, y_1\right)$ is $\frac{x^{\prime}}{a_1}+\frac{y_{y_1}}{\mathbf{b}^2}=1$
Differentiating $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ w.r.t. $x$, we have
$
\begin{array}{ll}
& \frac{2 x}{a^2}+\frac{2 y}{b^2} \frac{d y}{d x}=0 \\
\Rightarrow & \frac{d y}{d x}=-\frac{b^2 x}{a^2 y} \\
\Rightarrow & \left(\frac{d y}{d x}\right)_{(x, y)}=-\frac{b^2 x_1}{a^2 y_1}
\end{array}
$
Hence, equation of the tangent is $y-y_1=-\frac{b^2 x_1}{a^2 y_1}\left(x-x_1\right)$ or
$
\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}
$
But $\left(x_1, y_1\right)$ lies on the ellipse $\Rightarrow \frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1$
Hence, equation of the tangent is
$
\begin{aligned}
& \frac{x x_1}{a^2}+\frac{y y_1}{b^2}=1 \\
& \text { or } \quad \frac{x x_1}{a^2}+\frac{y y_1}{b^2}-1=0 \text { or } T=0 \\
& \text { where } \quad T=\frac{x x_1}{a^2}+\frac{y y_1}{b^2}-1
\end{aligned}
$
Note:
The equation T = 0 can also be used to find the equation of tangent at point (x1, y1) lying on any general ellipse.
Equation of Tangent of Ellipse in Parametric Form and Slope Form
Parametric Form:
The equation of tangent to the ellipse, $\frac{\mathrm{x}^{-}}{\mathrm{a}^2}+\frac{\mathrm{y}^{-2}}{\mathrm{~b}^2}=1$ at $(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$ is
$
\frac{\mathrm{x}}{\mathrm{a}} \cos \theta+\frac{\mathrm{y}}{\mathrm{~b}} \sin \theta=1
$
(This can be easily derived using the point form of tangent to an ellipse)
Slope Form:
Ellipse: $\quad \frac{\lambda}{\mathrm{a}^2}+\frac{y}{\mathrm{~b}^2}=1$
Line: $\quad \mathrm{y}=\mathrm{mx}+\mathrm{c}$
After solving Eq. (i) and Eq. (ii)
$
\begin{aligned}
& \frac{x^2}{a^2}+\frac{(m x+c)^2}{b^2}=1 \\
\Rightarrow \quad & \left(a^2 \mathrm{~m}^2+\mathrm{b}^2\right) x^2+2 \mathrm{mca}^2 \mathrm{x}+\mathrm{c}^2 \mathrm{a}^2-\mathrm{a}^2 \mathrm{~b}^2=0
\end{aligned}
$
For tangent, $\mathrm{D}=0$
$
\begin{array}{ll}
& 4 a^4 m^2 c^2-4\left(a^2 m^2+b^2\right) a^2\left(c^2-b^2\right)=0 \\
\Rightarrow & c^2=a^2 m^2+b^2 \\
\therefore & c= \pm \sqrt{a^2 m^2+b^2}
\end{array}
$
put the value of $c$ in $y=m x+c$
we get
$
\mathrm{y}=\mathrm{mx} \pm \sqrt{\left(\mathrm{a}^2 \mathrm{~m}^2+\mathrm{b}^2\right)}
$
The equation of tangent of slope m to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ are $=m x \pm \sqrt{a^2 m^2+b^2}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"