NIT Kurukshetra Seat Matrix 2024 (Released) - Check Total Seats

Equation of Tangent to Ellipse - Practice Questions & MCQ

Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 77 Questions around this concept.

Solve by difficulty

In an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the:

From a point on the circle $x^2+y^2=1$, two tangents are drawn to the ellipse $a x^2+b y^2=1$. The locus of the midpoint of their chord of contact is $\left(\mathrm{ax}^2+\mathrm{by}^2\right)^2=\mathrm{k}\left(\mathrm{x}^2+\mathrm{y}^2\right)$, where $\mathrm{k}=$

A tangent to the ellipse \mathrm{x^2+4 y^2=4} meets the ellipse \mathrm{x^2+2 y^2=6} at P and Q. The tangents at P and Q to the ellipse \mathrm{x^2+2 y^2=6} are making an angle:

If any tangent to the ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} intercepts equal lengths l on the axes, then l= 

The locus of the point of intersection of the perpendicular tangents to the ellipse \mathrm{\frac{x^2}{9}+\frac{y^2}{4}=1} is

Equation of tangents to ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$, which are perpendicular to the line $3 \mathrm{x}+$ $4 y=-7$

If tangents are drawn to the ellipse $x^{2}+2y^{2}=2$ at all points on the ellipse other than its four vertices then the midpoints of the tangents intercepted between the coordinate axes lie on the curve :

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

A line intersects the ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} at P and Q and the parabola \mathrm{y^2=4 d(x+a)} at R and S. The line segment PQ subtends a right angle at the centre of the ellipse. The locus of the point of intersection of the tangents to the parabola at R and S is \mathrm{y^2+4 d^2=k d^2(x+2 a)^2 \left(\frac{1}{a^2}+\frac{1}{b^2}\right)}, where \mathrm{k=}

The minimum area of a triangle formed by any tangent to the ellipse   $\mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}$ with the coordinate axis is 

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

Write the parametric form of the ellipse:

$\frac{x^2}{9}+\frac{y^2}{4}=1$

Concepts Covered - 2

Equation of Tangent of Ellipse in Point Form

Equation of Tangent of Ellipse in Point Form:

The equation of tangent to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ at point $\left(x_1, y_1\right)$ is $\frac{x^{\prime}}{a_1}+\frac{y_{y_1}}{\mathbf{b}^2}=1$

Differentiating $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ w.r.t. $x$, we have

$
\begin{array}{ll} 
& \frac{2 x}{a^2}+\frac{2 y}{b^2} \frac{d y}{d x}=0 \\
\Rightarrow & \frac{d y}{d x}=-\frac{b^2 x}{a^2 y} \\
\Rightarrow & \left(\frac{d y}{d x}\right)_{(x, y)}=-\frac{b^2 x_1}{a^2 y_1}
\end{array}
$

Hence, equation of the tangent is $y-y_1=-\frac{b^2 x_1}{a^2 y_1}\left(x-x_1\right)$ or

$
\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}
$

But $\left(x_1, y_1\right)$ lies on the ellipse $\Rightarrow \frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1$

Hence, equation of the tangent is

$
\begin{aligned}
& \frac{x x_1}{a^2}+\frac{y y_1}{b^2}=1 \\
& \text { or } \quad \frac{x x_1}{a^2}+\frac{y y_1}{b^2}-1=0 \text { or } T=0 \\
& \text { where } \quad T=\frac{x x_1}{a^2}+\frac{y y_1}{b^2}-1
\end{aligned}
$

Note:

The equation T = 0 can also be used to find the equation of tangent at point (x1, y1) lying on any general ellipse.

Equation of Tangent of Ellipse in Parametric Form and Slope Form

Equation of Tangent of Ellipse in Parametric Form and Slope Form

Parametric Form:

The equation of tangent to the ellipse, $\frac{\mathrm{x}^{-}}{\mathrm{a}^2}+\frac{\mathrm{y}^{-2}}{\mathrm{~b}^2}=1$ at $(\mathrm{a} \cos \theta, \mathrm{b} \sin \theta)$ is

$
\frac{\mathrm{x}}{\mathrm{a}} \cos \theta+\frac{\mathrm{y}}{\mathrm{~b}} \sin \theta=1
$

(This can be easily derived using the point form of tangent to an ellipse)

Slope Form:

Ellipse: $\quad \frac{\lambda}{\mathrm{a}^2}+\frac{y}{\mathrm{~b}^2}=1$
Line: $\quad \mathrm{y}=\mathrm{mx}+\mathrm{c}$
After solving Eq. (i) and Eq. (ii)

$
\begin{aligned}
& \frac{x^2}{a^2}+\frac{(m x+c)^2}{b^2}=1 \\
\Rightarrow \quad & \left(a^2 \mathrm{~m}^2+\mathrm{b}^2\right) x^2+2 \mathrm{mca}^2 \mathrm{x}+\mathrm{c}^2 \mathrm{a}^2-\mathrm{a}^2 \mathrm{~b}^2=0
\end{aligned}
$
For tangent, $\mathrm{D}=0$

$
\begin{array}{ll} 
& 4 a^4 m^2 c^2-4\left(a^2 m^2+b^2\right) a^2\left(c^2-b^2\right)=0 \\
\Rightarrow & c^2=a^2 m^2+b^2 \\
\therefore & c= \pm \sqrt{a^2 m^2+b^2}
\end{array}
$

put the value of $c$ in $y=m x+c$
we get

$
\mathrm{y}=\mathrm{mx} \pm \sqrt{\left(\mathrm{a}^2 \mathrm{~m}^2+\mathrm{b}^2\right)}
$

The equation of tangent of slope m to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ are $=m x \pm \sqrt{a^2 m^2+b^2}$

Study it with Videos

Equation of Tangent of Ellipse in Point Form
Equation of Tangent of Ellipse in Parametric Form and Slope Form

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top