Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Distance of a Point From a Line is considered one the most difficult concept.
46 Questions around this concept.
If a line, $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is a tangent to the circle, $(x-3)^2+y^2=1$ and it is perpendicular to a line $L_1$, where, $L_1$ is the tangent to the circle, $x^2+y^2=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; then :
If the length of the perpendicular drawn from the origin to the line whose intercepts on the axes are a and b be p, then
Calculate the distance of point $P(3,1)$ from line $4 x+3 y-10=0 \mid$
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
$
\text { Find the distance of }(3,4) \text { from } 5 x-12 y+3=0
$
A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is
Distance of a point from a line
Perpendicular length from a point $\left(x_1, y_1\right)$ to the line $L$ : $A x+B y+C=0$ is
$
\frac{\left|\mathbf{A x}_1++\mathbf{B} \mathbf{y}_1+\mathbf{C}\right|}{\sqrt{\mathrm{A}^2+\mathrm{B}^2}}
$
Let $L$ : $A x+B y+C=0$ be a line, whose distance from the point $P\left(x_1, y_1\right)$ is $d$. Draw a perpendicular $P M$ from the point $P$ to the line $L$
The line meets the x -and y -axes at the points Q and R , respectively. Then, the coordinates of the points are $Q\left(-\frac{C}{A}, 0\right) \quad R\left(0,-\frac{C}{B}\right)$.Thus, the area of the triangle PQR is given by
$
\begin{aligned}
& \text { area }(\triangle \mathrm{PQR})=\frac{1}{2} \mathrm{PM} \cdot \mathrm{QR} \Rightarrow \mathrm{PM}=\frac{2(\operatorname{area} \Delta \mathrm{PQR})}{\mathrm{QR}} \\
& \text { also. } \begin{aligned}
\text { area }(\Delta \mathrm{PQR}) & =\frac{1}{2}\left|\mathrm{x}_1\left(0+\frac{\mathrm{C}}{\mathrm{~B}}\right)+\left(-\frac{\mathrm{C}}{\mathrm{~A}}\right)\left(-\frac{\mathrm{C}}{\mathrm{~B}}-\mathrm{y}_1\right)+0\left(\mathrm{y}_1-0\right)\right| \\
& =\frac{1}{2}\left|\mathrm{x}_1 \frac{\mathrm{C}}{\mathrm{~B}}+\mathrm{y}_1 \frac{\mathrm{C}}{\mathrm{~A}}+\frac{\mathrm{C}^2}{\mathrm{AB}}\right|
\end{aligned} \\
& \text { or } 2 \times \operatorname{area}(\Delta P Q R)=\left|\frac{C}{A B}\right|\left|A x_1+B y_1+C_1\right|
\end{aligned} \begin{aligned}
& \mathrm{QR}=\sqrt{\left(0+\frac{\mathrm{C}}{\mathrm{~A}}\right)^2+\left(\frac{\mathrm{C}}{\mathrm{~B}}-0\right)^2}=\left|\frac{\mathrm{C}}{\mathrm{AB}}\right| \sqrt{\mathrm{A}^2+\mathrm{B}^2}
\end{aligned}
$
Substituting the values
$
\mathrm{PM}=\frac{\left|\mathrm{Ax}_1++\mathrm{By}_1+\mathrm{C}\right|}{\sqrt{\mathrm{A}^2+\mathrm{B}^2}}
$
Distance between two parallel lines
The equation of two parallel line is $a x+b y+c=0$ and $a x+b y+d=0$, then the distance between them is the perpendicular distance of any point on one line from the other line.
If $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is any point on the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
Then, $\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}=0$
Now, perpendicular distance of the point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ from the line $a x+b y+d=0$ is
$
\frac{\left|\mathrm{ax}_1+\mathrm{by}_1+\mathrm{d}\right|}{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}=\frac{|\mathrm{d}-\mathrm{c}|}{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"