Amity University, Mumbai B.Tech Admissions 2025
ApplyRanked amongst top 3% universities globally (QS Rankings)
5 Questions around this concept.
If a vertex of a triangle is $(1,1)$ and the midpoints of two sides through this vertex are $(-1,2)$ and $(3,2)$, and if this triangle is rotated with $45^{\circ}$ about the origin O then the centroid of the triangle is
A line passing through the point $\mathrm{A}(9,0)$ makes an angle of $30^{\circ}$ with the positive direction of $x$-axis. If this line is rotated about A through an angle of $15^{\circ}$ in the clockwise direction, then its equation in the new position is:
Rotation of Axes About Origin
$P(x, y)$ is the point in the original coordinate system and axes are rotated by an angle $\ominus$ anticlockwise direction about the origin. Then, the coordinates of point P with respect to the new coordinate system is $(\mathrm{X}, \mathrm{Y})=(\mathrm{x} \cos \theta+\mathrm{y} \sin \theta, \mathrm{y} \cos \theta-\mathrm{x} \sin \theta)$.
OX and OY are original system of coordinate axes and OX' and OY' are the new system of coordinate axes. PM and PN are perpendicular to OX and OX' and also NL and NQ perpendicular OX and PM .
We have
From the figure:
$
\mathrm{OM}=\mathrm{x}, \mathrm{PM}=\mathrm{y} \mathrm{ON}=\mathrm{X} \text { and } \mathrm{PN}=\mathrm{Y}
$
Now,
$
\mathrm{x}=\mathrm{OM}=\mathrm{OL}-\mathrm{ML}
$
$\because$ angle between two lines $=$ angles between their perpendiculars
$
\begin{aligned}
& =\mathrm{OL}-\mathrm{QN}=\mathrm{ON} \cos \theta-\mathrm{PN} \sin \theta \\
& =\mathrm{X} \cos \theta-\mathrm{Y} \sin \theta
\end{aligned}
$
i.e. $\mathbf{x}=\mathbf{X} \cos \theta-\mathbf{Y} \sin \theta$
And,
$
\begin{aligned}
\mathrm{y} & =\mathrm{PM}=\mathrm{PQ}+\mathrm{QM}=\mathrm{PQ}+\mathrm{NL} \\
& =\mathrm{PN} \cos \theta+\mathrm{ON} \sin \theta \\
& =\mathrm{Y} \cos \theta+\mathrm{X} \sin \theta
\end{aligned}
$
i.e. $\mathbf{y}=\mathbf{Y} \cos \theta+\mathbf{X} \sin \theta$
Solving (i) and (ii), we get
$
\begin{aligned}
& X=x \cos \theta+y \sin \theta \\
& Y=y \cos \theta-x \sin \theta
\end{aligned}
$
AID TO MEMORY
\begin{array}{|c|c|c|}
\hline & x & y \\
\hline X & \cos \theta & \sin \theta \\
\hline Y & -\sin \theta & \cos \theta \\
\hline
\end{array}
"Stay in the loop. Receive exam news, study resources, and expert advice!"