How to Improve Your Performance in JEE Main 2025 April Attempt?

Arithmetico Geometric Series - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 5 Questions around this concept.

Solve by difficulty

The sum $1+3+11+25+45+71+........ $ up to 20 terms is equal to

Concepts Covered - 1

Arithmetico-Geometric Progression

Arithmetic-Geometric Progression
Arithmetico-Geometric Progression is the combination of arithmetic and geometric series. This series is formed by taking the product of the corresponding elements of arithmetic and geometric progressions. In short form, it is written as A.G.P (Arithmetico-Geometric Progression).

Let the given AP be $a,(a+d),(a+2 d),(a+3 d)$,
And, the GP is $1, r, r^2, r^3, \ldots \ldots$
Multiplying the corresponding elements of the above progression, we get, $a,(a+d) r,(a+2 d) r^2,(a+3 d) r^3, \ldots \ldots$
This is a standard Arithmetico-Geometric Progression.
Eg: $1,3 x, 5 x^2, 7 x^3, 9 x^4$,
The sum of n-terms of an Arithmetic-Geometric Progression
Let $S_n$ denote the sum of $n$ terms of a given sequence. Then,

$
\mathrm{S}_{\mathrm{n}}=a+(a+d) r+(a+2 d) r^2+\ldots \ldots+(a+(n-1) d) r^{n-1}
$
Multiply both sides of eq (i) by 'r'

$
r \mathrm{~S}_{\mathrm{n}}=a r+(a+d) r^2+(a+2 d) r^3+\ldots+(a+(n-1) d) r^n
$
Subtract eq (ii) from eq (i)

$
\begin{aligned}
& (1-r) \mathrm{S}_{\mathrm{n}}=a+\left[d r+d r^2+d r^3+\ldots .+d r^{n-1}\right]-[a+(n-1) d] r^n \\
& \Rightarrow(1-r) \mathrm{S}_{\mathrm{n}}=a+d r\left(\frac{1-r^{n-1}}{1-r}\right)-[a+(n-1) d] r^n \\
& \Rightarrow \mathbf{S}_{\mathbf{n}}=\frac{\mathbf{a}}{\mathbf{1}-\mathbf{r}}+\mathbf{d r}\left(\frac{1-\mathbf{r}^{\mathbf{n}-\mathbf{1}}}{(1-\mathbf{r})^2}\right)-\frac{[\mathbf{a}+(\mathbf{n}-\mathbf{1}) \mathbf{d}] \mathbf{r}^{\mathbf{n}}}{\mathbf{1}-\mathbf{r}}
\end{aligned}
$
 

Study it with Videos

Arithmetico-Geometric Progression

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Arithmetico-Geometric Progression

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.22

Line : 42

E-books & Sample Papers

Get Answer to all your questions

Back to top