Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
ApplyRecognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
4 Questions around this concept.
Arithmetic-Geometric Progression
Arithmetico-Geometric Progression is the combination of arithmetic and geometric series. This series is formed by taking the product of the corresponding elements of arithmetic and geometric progressions. In short form, it is written as A.G.P (Arithmetico-Geometric Progression).
Let the given AP be $a,(a+d),(a+2 d),(a+3 d)$,
And, the GP is $1, r, r^2, r^3, \ldots \ldots$
Multiplying the corresponding elements of the above progression, we get, $a,(a+d) r,(a+2 d) r^2,(a+3 d) r^3, \ldots \ldots$
This is a standard Arithmetico-Geometric Progression.
Eg: $1,3 x, 5 x^2, 7 x^3, 9 x^4$,
The sum of n-terms of an Arithmetic-Geometric Progression
Let $S_n$ denote the sum of $n$ terms of a given sequence. Then,
$
\mathrm{S}_{\mathrm{n}}=a+(a+d) r+(a+2 d) r^2+\ldots \ldots+(a+(n-1) d) r^{n-1}
$
Multiply both sides of eq (i) by 'r'
$
r \mathrm{~S}_{\mathrm{n}}=a r+(a+d) r^2+(a+2 d) r^3+\ldots+(a+(n-1) d) r^n
$
Subtract eq (ii) from eq (i)
$
\begin{aligned}
& (1-r) \mathrm{S}_{\mathrm{n}}=a+\left[d r+d r^2+d r^3+\ldots .+d r^{n-1}\right]-[a+(n-1) d] r^n \\
& \Rightarrow(1-r) \mathrm{S}_{\mathrm{n}}=a+d r\left(\frac{1-r^{n-1}}{1-r}\right)-[a+(n-1) d] r^n \\
& \Rightarrow \mathbf{S}_{\mathbf{n}}=\frac{\mathbf{a}}{\mathbf{1}-\mathbf{r}}+\mathbf{d r}\left(\frac{1-\mathbf{r}^{\mathbf{n}-\mathbf{1}}}{(1-\mathbf{r})^2}\right)-\frac{[\mathbf{a}+(\mathbf{n}-\mathbf{1}) \mathbf{d}] \mathbf{r}^{\mathbf{n}}}{\mathbf{1}-\mathbf{r}}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"