HomeEngineering and Architecture ExamsTelangana State Post Graduate Engineering Common Entrance Test

TS PGECET Exam 2025: Date (Out), Application Form, Syllabus, Eligibility, Sample Papers

Upcoming Event
TS PGECET Exam Date : 16 Jun' 2025 - 19 Jun' 2025
Updated on 16th January, 2025 by Gandubilli Unnati

About TS PGECET 2025

TS PGECET 2025 - TSCHE has announced the TS PGECET 2025 exam date on the official website pgecet.tsche.ac.in. JNTUH will conduct the TS PGECET 2025 exam from June 16 to 19, 2025 in online mode. The complete schedule for the TS PGECET 2025 exam will soon be released on the official website. The authority is expected to commence the TS PGECET 2025 registrations in March 2025. Candidates must check the TS PGECET 2025 Eligibility criteria before applying for the exam. The minimum qualifying exam percentage to apply for the PGECET 2025 exam is a minimum of 50% marks (45% for reserved category) . Moreover, candidates who have valid scores in GATE exam can also apply for admission. Candidates can follow the TS PGECET syllabus and exam pattern to prepare for the exam.

TS PGECET 2025 Latest News and Updates

  • TSCHE has announce the TS PGECET 2025 exam dates from June 16 to 19, 2025.

About TS PGECET

The TS PGECET exam is conducted by Jawaharlal Nehru Technological University (JNTU), Hyderabad on behalf of Telangana State Council of Higher Education (TSCHE) for admissions into regular PG courses in Engineering, Technology, Architecture, and Pharmacy

Read more

TS PGECET 2025 Highlights

Full Exam Name
Telangana State Post Graduate Engineering Common Entrance Test
Short Exam Name
TS PGECET
Conducting Body
Jawaharlal Nehru Technological University Hyderabad
Frequency Of Conduct
Once a year
Exam Level
State Level Exam
Languages
English
Mode Of Application
online
Application Fee
Online : 1100
Mode Of Exam
online
Mode Of Counselling
online
Participating Colleges
187
Exam Duration
2 Hours

TS PGECET Important Dates

TS PGECET Telangana State Post Graduate Engineering Common Entrance Test (session 2025)

16 Jun' 2025 - 19 Jun' 2025 . Offline
Exam Date

The authorities will release the TS PGECET 2025 eligibility criteria on the official website. Candidates aspiring to apply for the university exam have to check and meet the eligibility criteria of TS PGECET 2025 before filling in the online application form. The eligibility criteria of TS PGECET 2025 is mentioned below:

  • Only Indian nationals can apply for TS PGECET 2025.

  • Candidates shall belong to either Andhra Pradesh or Telangana State

  • All the candidates must present the local or non-local residents as per the requirements of the admission

  • Candidates should have scored at least 50% marks in the qualifying exam for the general categories while for the reserved categories at least 45% marks should have been scored. 

  • GATE-qualified candidates are also eligible to apply for the admission

  • Candidates in their final year of graduation are also eligible to apply for the Telangana Post Graduate Engineering Common Entrance Test.

featureImage
Background wave

The dates for the TS PGECET 2025 application form will be released on the official website. Candidates first have to pay the application fee through the debit/credit card or at the AP/TS centres and then fill in their personal and academic details to complete registration. Any application form with incomplete details will be rejected. After candidates successfully fill the TS PGECET application form 2025, their registration ID for the exam will be generated. The steps to complete the TS PGECET application form are provided below.

Steps to fill TS PGECET 2025 application form

The aspiring candidates are advised to go through the following stepwise procedure to fill in the application form:

STEP 1- Payment of Fees: 

  • Candidates applying for TS PGECET 2025 will first be required to pay the examination fee. The University accepts the payment of the application form of TS PGECET 2025 through two modes- AP/TS Centres or Credit/Debit Card.

TS PGECET application form

STEP 2-Registration: 

  • Candidates will have to complete the initial registration as a part of the application form of TS PGECET 2025. In order to register, candidates will be required to fill in the details such as Payment reference ID, Qualifying Examination Hall ticket number, mobile number, and date of birth.

STEP 3- Login: 

  • Candidates whose registration process is complete should log into the admission portal to fill in the application form.

STEP 4- Filling the Application Form:  

  • Candidates should fill all the required details in the application form such as Name, Gender, Parent’s name, exam centre, Aadhaar card number, category and application number of Caste certificate, Special category, income certificate, minority status, etc. Then the academic details, contact details, preferred exam centre, and subject stream have to be entered accordingly. 

STEP 5- Document Upload: 

  • Candidates will be required to upload the documents to complete the application form. They will be required to upload their recent photograph (of less than 50 kb in JPEG/JPG format) and signature (of less than 30 kb in JPEG/JPG format). Documents if not uploaded in the correct order, the candidate’s application form for TS PGECET 2025 might get rejected.

STEP 6- Submission of the Application Form: 

  • Once all the details are entered, candidates will have to review their TS PGECET 2025 application form. The registration ID will be displayed which the candidates should make a note of for future purposes. Thereafter, candidates will have to click on the “confirm” button to submit their application form. 

Exclusive Careers360 Premium Content

Get education, career guidance; live webinars; learning resources and more

Subscribe Now

Documents Required at Exam TS PGECET 2025

Telangana State Post Graduate Engineering Common Entrance Test 2025

  • TS PGECET 2025 hall ticket

TS PGECET 2025 Exam Centers

StateCity
Telangana
Hyderabad
Warangal
Pearson | PTE

Trusted by 3,500+ universities and colleges globally | Accepted for migration visa applications to AUS, CAN, New Zealand , and the UK

GMAT™ Exam

Select test center appointment | Scores valid for 5 Years | Multiple Attempts

The authorities will release the TS PGECET 2025 exam pattern on the official website. Candidates planning to take the TS PGECET exam 2025 must go through the exam pattern beforehand. The exam pattern of TS PGECET 2025 consists of time duration, marking scheme, total marks, subject-wise marks, and the subjects on which the question paper will be based. The exam will be conducted in Computer Based Test (CBT).

TS PGCET 2025 Exam Pattern

Particulars

Details

Medium of Question Paper

English only

Mode of test

Computer Based Test

Duration of the examination

2 hours

Total number of questions

120

Marking Scheme

1 mark for each correct answer

Type of questions

Multiple-choice objective-type questions

Negative Marking

Not applicable

Other Engineering Exams

Chandigarh University Common Entrance Test
Ranked #1 Among all Private Indian Universities in QS Asia Rankings 2025 | Scholarships worth 210 CR
Pearson Test of English Academic
Trusted by 3,500+ universities and colleges globally | Accepted for migration visa applications to AUS, CAN, New Zealand , and the UK
Test of English as Foreign Language
Accepted by more than 11,000 universities in over 150 countries worldwide

TS PGECET 2025 Syllabus

TS PGECET Aerospace Engineering Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Vector algebra, matrix algebra, systems of linear equations, Eigenvalues and Eigenvectors, rank of a matrix

Engineering mathematics: Unit 02


Calculus
  • Functions of single variable, limit, continuity, and differentiability, mean value theorems, chain rule, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities, directional derivatives, line
  • Surface and volume integrals
  • Stokes, Gauss, and Green’s theorem

Engineering mathematics: Unit 03


Differential calculus
  • First order linear and nonlinear equations; higher order linear odes with constant coefficients, Laplace transforms
  • Partial differential equations and separation of variables methods

Engineering mathematics: Unit 04


Numerical methods
  • Numerical solution of linear and nonlinear algebraic equations, integration by trapezoidal and Simpson rule, single and multi-step methods for differential equations

Flight mechanics: Unit 01


Atmosphere
  • Properties, standard atmosphere
  • Classification of aircraft
  • Airplane (fixed wing aircraft) configuration and various parts

Flight mechanics: Unit 02


Airplane performance
  • Pressure altitude; equivalent, calibrated, indicated air speeds; primary flight instruments: Altimeter, ASI, VSI, turn-bank indicator
  • Drag polar; take-off and landing; steady climb and descent, absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-N diagram; winds: Head, tail, and cross winds

Flight mechanics: Unit 03


Static stability
  • Angle of attack, sideslip; roll, pitch, and yaw controls; longitudinal stick fixed and free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability
  • Wing dihedral, sweep, and position; hinge moments, stick forces

Flight mechanics: Unit 04


Dynamic stability
  • Euler angles; equations of motion; aerodynamic forces and moments, stability, and control derivatives; decoupling of longitudinal and lateral directional dynamics and modes

Flight mechanics: Unit 05


Space dynamics
  • Central force motion, determination of trajectory and orbital period in simple cases
  • Orbit transfer, in-plane, and out-of-plane

Aerodynamics: Unit 01


Basic fluid mechanics
  • Incompressible flows irrotational flow, viscous flows, boundary layer on a flat plate, Reynold’s number conservation of mass, momentum and energy, potential flow theory, sources, sinks, doubles, line vertex and their superposition, viscosity

Aerodynamics: Unit 02


Airfoils and wings
  • Classification of airfoils, aerodynamic characteristics, high lift devices, Kutta–Joukowski theorem; lift generation; thin airfoil theory; finite wing theory; induced drag; Prandtl lifting line theory, critical and drag, divergence mach number

Aerodynamics: Unit 03


Compressible flows
  • Basic concepts of compressibility, conservation equations; one dimensional compressible flows, isentropic flows, Fanno flow, Rayleigh flow; normal and oblique shocks, Prandtl-Meyer flow; flow through nozzles and diffusers
  • Elementary ideas of viscous flows including boundary layers; wind tunnel testing: Measurement and visualization techniques

Aerodynamics: Unit 04


Strength of materials
  • States of stress and strain
  • Stress and strain transformation
  • Mohr's circle
  • Principal stresses
  • Three-dimensional Hooke's law
  • Plane stress and plane strain; failure theories: Rankine, Tresca and von Mises; strain energy
  • Castigliano's principles
  • Analysis of statically determinate and indeterminate trusses and beams
  • Elastic flexural buckling of columns

Aerodynamics: Unit 05


Flight vehicle structures
  • Characteristics of aircraft structures and materials
  • Torsion, bending, and flexural shear of thin-walled sections
  • Loads on aircraft

Aerodynamics: Unit 06


Structural dynamics
  • Free and forced vibrations of undamped and damped SDOF systems
  • Free vibrations of undamped 2-DOF systems
  • Vibration of beams
  • Theory of elasticity: Equilibrium and compatibility equations, Airy’s stress function

Propulsion: Unit 01


Basics
  • Thermodynamics, boundary layers and heat transfer and combustion thermochemistry

Propulsion: Unit 02


Thermodynamics of aircraft engines
  • Thrust, efficiency and engine performance of turbojet, turboprop, turbo shaft, turbofan and ramjet engines, thrust augmentation of turbojets and turbofan engines
  • Aerothermodynamics of non-rotating propulsion components such as intakes, combustor and nozzle

Propulsion: Unit 03


Axial compressors
  • Angular momentum, work and compression, characteristic performance of a single stage axial compressor, stage efficiency of the compressor and degree of reaction

Propulsion: Unit 04


Axial turbines
  • Turbine, stage efficiency annual flow turbine

Propulsion: Unit 05


Centrifugal compressor
  • Centrifugal compressor stage dynamics, inducer, impeller, and diffuser

Propulsion: Unit 06


Rocket propulsion
  • Elements of rocket motor performance, thrust equation and specific impulse, vehicle acceleration, drag, gravity losses, multi-staging of rockets
  • Classification of chemical rockets, performance of solid and liquid propellant rockets
TS PGECET Architecture and Planning Syllabus

Architecture and planning: Unit 01


City planning
  • Evolution of cities; principles of city planning; types of cities and new towns; planning regulations and building bye laws; climate change and eco-city concept and other emerging concepts such as urban agriculture TOD, smart city, etc
  • Sustainable development, disaster resilient urban planning, inclusive planning

Architecture and planning: Unit 02


Housing
  • Concept of housing; neighborhood concept; site planning principles; housing typology; housing standards; housing infrastructure; housing policies, finance and management; housing programs in India; affordable housing and self help housing
  • Eco-friendly housing, age-friendly housing

Architecture and planning: Unit 03


Landscape design
  • Principles of landscape design and site planning; history of landscape styles; landscape elements and materials; plant characteristics and planting design; environmental considerations in landscape planning

Architecture and planning: Unit 04


Computer aided design
  • Application of computers in architecture and planning; understanding elements of hardware and software; computer graphics; programming languages C and visual basic and usage of packages such as autoCAD, 3D-studio, 3D max

Architecture and planning: Unit 05


Environmental studies in building science
  • Components of ecosystem; ecological principles concerning environment; climate responsive design; energy efficient building design, green building concepts and ratings; thermal comfort; solar architecture
  • Principles of lighting and styles for illumination; basic principles of architectural acoustics; environment pollution, their control and abatement

Architecture and planning: Unit 06


Visual and urban design
  • Principles of visual composition; proportion, scale, rhythm, symmetry, harmony, datum, balance, form, color, texture; sense of place and space, division of space; barrier free design; theories and concepts of urban design, focal point, vista
  • Image ability, visual survey, figure-background relationship

Architecture and planning: Unit 07


History of architecture
  • Indian indus valley, Vedic, Buddhist, Indo-Aryan, Dravidian and Mughal periods; European Egyptian, Greek, Roman, Medieval, and Renaissance periods-construction and architectural styles; vernacular and traditional architecture

Architecture and planning: Unit 08


Development of contemporary architecture
  • Architectural developments and impacts on society since industrial revolution; influence of modern art on architecture; works of national and international architects; Art Nouveau, eclecticism, international styles, postmodernism
  • Deconstruction in architecture

Architecture and planning: Unit 09


Building services
  • Water supply, sewerage and drainage systems; sanitary fittings and fixtures; plumbing systems, principles of internal and external drainage systems, principles of electrification of buildings, intelligent buildings; elevators and escalators
  • Their standards and uses; air conditioning systems; fire fighting systems, building safety, and security systems

Architecture and planning: Unit 10


Building construction and management
  • Building construction techniques, methods and details; building systems and prefabrication of building elements; principles of modular coordination; estimation, specification, valuation, professional practice
  • Project management techniques EG, PERT, CPM, etc

Architecture and planning: Unit 11


Materials and structural systems
  • Behavioral characteristics of all types of building materials E.G. mud, timber, bamboo, brick, concrete, steel, glass, FRP, different polymers, composites; principles of strength of materials; design of structural elements in wood, steel and RCC
  • Elastic and limit state design; complex structural systems; principles of prestressing; tall buildings; principles of disaster resistant structures

Architecture and planning: Unit 12


Planning theory
  • Regional planning; settlement system planning; history of human settlements; growth of cities and metropolises; principles of ekistics; rural-urban migration; urban conservation; urban renewal; five year plan; structural and sectoral plan, master plan
  • Zonal plan and local area plan, planning in rural areas

Architecture and planning: Unit 13


Techniques of planning
  • Planning survey techniques; preparation of urban and regional structure plans, development plans, action plans; site planning principles and design; statistical methods of data analysis
  • Application of GIS high resolution satellite data processing and remote sensing techniques in urban and regional planning; decision making models

Architecture and planning: Unit 14


Traffic and transportation planning
  • Principles of traffic engineering and transportation planning; traffic survey methods; design of roads, intersections, grade separators and parking areas; hierarchy of roads and levels of services; traffic and transport management in urban areas
  • Intelligent transportation system; mass transportation planning; para-transits and other modes of transportation, pedestrian and slow moving traffic planning

Architecture and planning: Unit 15


Infrastructure, services, and amenities
  • Principles of water supply and sanitation systems; water treatment; solid waste disposal systems; waste treatment, recycle and reuse; urban rainwater harvesting; power supply and communication systems-network, design and guidelines
  • Demography related standards at various levels of the settlements for health, education, recreation, religious and public-semi public facilities

Architecture and planning: Unit 16


Development administration, and management
  • Planning laws; development control and zoning regulations; URDPFI guidelines, laws relating to land acquisition; development enforcements, urban land ceiling; land management techniques; planning and municipal administration
  • Disaster mitigation management; 73rd and 74th constitutional amendments; valuation and taxation; revenue resources and fiscal management; public participation and role of NGO and CBO; institutional networking and capacity building
  • UN-habitat norms, urban and regional governance, participatory approach in planning
TS PGECET Biomedical Engineering Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Matrix algebra, systems of linear equations, Eigenvalues, and Eigenvectors
  • Calculus: Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss, and Green’s theorems

Engineering mathematics: Unit 02


Differential equations
  • First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchy’s and Euler’s equations, initial and boundary value problems
  • Solution of partial differential equations: variable separable method

Engineering mathematics: Unit 03


Analysis of complex variables
  • Analytic functions, Cauchy’s integral theorem and integral formula, Taylor’s and Laurent’s series, residue theorem, solution of integrals

Engineering mathematics: Unit 04


Probability and Statistics
  • Sampling theorems, conditional probability, mean, median, mode, and standard deviation, random variables, discrete and continuous distributions: Normal, Poisson, and binomial distributions
  • Tests of Significance, statistical power analysis, and sample size estimation
  • Regression and correlation analysis

Engineering mathematics: Unit 05


Numerical methods
  • Matrix inversion, solutions of nonlinear algebraic equations, iterative methods for solving differential equations, numerical integration

Electrical Circuits: Unit 01


Voltage and current sources
  • Independent, dependent, ideal, and practical; V-I relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with DC excitation
  • Kirchoff’s laws; mesh, and nodal analysis; superposition, Thevenin, Norton, maximum power transfer, and reciprocity theorems
  • Peak, average, and RMS values of AC quantities; apparent, active, and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, realization of basic filters with R, L, and C elements

Signals and systems: Unit 01


Continuous and discrete signal and systems
  • Periodic, aperiodic and impulse signals; sampling theorem; Laplace, Fourier and Z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation
  • Discrete time system: Impulse response, frequency response, DFT; basics of IIR and FIR filters

Analog and digital electronics: Unit 01


Characteristics and applications of diode
  • Zener diode, BJT, and MOSFET; small signal analysis of transistor circuits, feedback amplifiers
  • Characteristics of operational amplifiers; applications of op amps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, buffer

Analog and digital electronics: Unit 02


Number systems
  • Logic gates, Boolean algebra, combinational logic circuits, arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer
  • Principles and characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/ settling time); microprocessor and microcontroller: Applications, memory and input-output interfacing; elements of data acquisition systems

Measurements and control systems: Unit 01


PMMC, MI and dynamometer type instruments
  • DC potentiometer; bridges for measurement of R, L and C, Q-meter
  • Basics of control engineering-modeling system: Transfer function

Sensors and bioinstrumentation: Unit 01


Resistive, capacitive, inductive, piezoelectric
  • Hall effect electrochemical and optical sensors and their associated signal conditioning circuits; optical sources and detectors: LED, photodiode, light dependent resistor and their characteristics; physiological signals and their characteristics
  • Biopotential amplifiers, generation, acquisition, and signal conditioning of biosignals: ECG, EMG, EEG, EOG, ERG, PCG, GSR
  • Noise and artifacts and their management, electrical isolation (optical and electrical) and patient safety systems
  • Principles of measuring blood pressure
  • Operating principles of medical equipment-cardiac pacemaker, defibrillator, pulse oximeter, hemodialyzer, oxygenator, spirometer

Biomedical signal processing: Unit 01


QRS detection methods
  • ECG data compression algorithms, detection of resting rhythms

Biomechanics: Unit 01


Hard tissues
  • Structure, functions, composition, and mechanical properties of cortical and cancellous bones

Biomechanics: Unit 02


Soft tissues
  • Structure, functions, composition, and mechanical properties of soft tissues: Cartilage, tendon, ligament, muscle

Biomechanics: Unit 03


Viscoelasticity
  • Features and models

Biomechanics: Unit 04


Human joints and movements
  • Skeletal joints, types of joints, forces and stresses in human joints, free body diagrams and equilibrium, biomechanical of analysis joints, Gait parameters and their analysis

Biomechanics: Unit 05


Biofluid mechanics
  • Flow properties of blood, blood flow in arteries, veins and micro vessels

Medical imaging systems: Unit 01


Basic physics, instrumentation and image formation techniques in medical imaging modalities
  • X-ray, CT, ultrasound, MRI, PET

Biomaterials: Unit 01


Basic properties of biomaterials
  • Types of biomaterials-metals, ceramics, polymers, and composites
  • Characteristics of implants-biocompatibility, bioactivity, biodegradability
  • Biomaterial characterization techniques-atomic force microscopy, electron microscopy, transmission electron microscopy, infrared spectroscopy
TS PGECET Biotechnology Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Matrices and determinants
  • Systems of linear equations
  • Eigen values and Eigen vectors

Engineering mathematics: Unit 02


Calculus
  • Limit
  • Continuity and differentiability
  • Partial derivatives
  • Maxima and minima
  • Sequences and series
  • Test for convergence
  • Fourier series

Engineering mathematics: Unit 03


Differential equations
  • Linear and nonlinear first order ODEs
  • Higher order ODEs with constant coefficients
  • Cauchy's and Euler's equations
  • Laplace transforms
  • PDE Laplace
  • Heat and wave equations

Engineering mathematics: Unit 04


Probability and Statistics
  • Probability and Sampling Theorem
  • Conditional probability
  • Mean
  • Median
  • Mean, median, mode & standard deviation
  • Random variables
  • Poisson, normal & binomial distributions
  • Normal and binomial distributions
  • Correlation and regression analysis

Engineering mathematics: Unit 05


Numerical methods
  • Solution of linear and nonlinear algebraic equations
  • Integration of trapezoidal and Simpson's rule
  • Single and multistep methods for differential equations

Biotechnology: Unit 01


Microbiology
  • Prokaryotic and eukaryotic cell structure
  • Microbial nutrition
  • Growth and control
  • Microbial metabolism aerobic and anaerobic respiration, photosynthesis
  • Nitrogen fixation
  • Chemical basis of mutations and mutagens
  • Microbial genetics plasmids, transformation, transduction, conjugation
  • Microbial diversity and characteristic features viruses

Biotechnology: Unit 02


Biochemistry
  • Biomolecules and their conformation
  • Weak inter-molecular interactions and biomacromolecules
  • Chemical and functional nature of enzymes
  • Kinetics of single substrate and bi-substrate enzyme catalyzed reactions bioenergetics
  • Metabolism glycolysis, tca and oxidative phosphorylation
  • Membrane transport and pumps
  • Cell cycle and cell growth control
  • Cell signalling and signal transduction

Biotechnology: Unit 03


Molecular biology and genetics
  • Molecular structure of genes and chromosomes
  • DNA replication and control
  • Transcription and its control
  • Translational processes
  • Regulatory controls and prokaryotes and eukaryotes
  • Mendelian inheritance
  • Gene interaction
  • Complementation
  • Linkage
  • Recombination and chromosome mapping
  • Extra chromosomal inheritance
  • Chromosomal variation
  • Population genetics
  • Transposable elements
  • Molecular basis of genetic diseases and applications

Biotechnology: Unit 04


Process biotechnology
  • Bioprocess technology for the production of cell biomass and primary/secondary metabolites
  • Such as baker’s yeast, ethanol, citric acid, amino acids, exopolysacharides, antibiotics and pigments etc
  • Microbial production
  • Purification and bioprocess application (s) of industrial enzymes
  • Production and purification of recombinant proteins on a large scale
  • Chromatographic and membrane based bioseparation methods
  • Immobilization of enzymes and cells and their application for bioconversion processes
  • Aerobic and anaerobic biological processes for stabilization of solid / liquid wastes bioremediation

Biotechnology: Unit 05


Bioprocess engineering
  • Kinetics of microbial growth
  • Substrate utilisation and product formation
  • Simple structured models
  • Sterilization of air and media
  • Batch
  • Fed batch and continuous processes
  • Aeration and agitation
  • Mass transfer and bioreactors
  • Rheology of fermentation fluids
  • Scale up concepts
  • Design of fermentation media
  • Various types of microbial and enzyme reactors
  • Instrumentation and bioreactors

Biotechnology: Unit 06


Plant and animal biotechnology
  • Special features and organization of plant cells
  • Totipotency
  • Regeneration of plants
  • Plant products of industrial importance
  • Biochemistry of major metabolic pathways and products
  • Autotrophic and heterotrophic growth
  • Plant growth regulators and elicitors
  • Cell suspension culture development
  • Methodology
  • kinetics of growth and production formation
  • Nutrient optimization
  • Production of secondary metabolites by plant suspension cultures
  • Hairy root cultures and their cultivation
  • Techniques and raising transgencies

Biotechnology: Unit 07


Characteristics of animal cells
  • Metabolism
  • Regulation and nutritional requirements for mass cultivation of animal cell cultures
  • Kinetics of cell growth and product formation and effect of shear force
  • Product and substrate transport
  • Micro and macro carrier culture
  • Hybridoma technology
  • Live stock improvement
  • Cloning and animals
  • Genetic engineering and animal cell culture
  • Animal cell preservation

Biotechnology: Unit 08


Immunology
  • The origin of immunology
  • Inherent immunity
  • Humoral and cell mediated immunity
  • Primary and secondary lymphoid organ
  • Antigen b and t cells and macrophages
  • Major histocompatibility complex mhc
  • Antigen processing and presentation
  • Synthesis of antibody and secretion
  • Molecular basis of antibody diversity
  • Polyclonal and monoclonal antibody
  • Complement
  • Antigen antibody reaction
  • Regulation of immune response
  • Immune tolerance
  • Hyper sensitivity
  • Autoimmunity
  • Graft versus host reaction

Biotechnology: Unit 09


Recombinant DNA technology
  • Restriction and modification enzymes
  • Vectors
  • Plasmid
  • Bacteriophage andother viral vectors
  • Cosmids
  • Ti plasmid
  • Yeast artificial chromosome
  • CDNA and genomic DNA library
  • Gene isolation
  • Gene cloning
  • Expression of cloned gene
  • Transposons and gene targeting
  • DNA labelling
  • DNA Sequencing
  • Polymerase chain reactions
  • DNA fingerprinting
  • Southern and northern blotting
  • Situ hybridization
  • RAPD
  • RFLP
  • Sitedirected mutagenesis
  • Gene transfer technologies
  • Gene therapy

Biotechnology: Unit 10


Bioinformatics
  • Major bioinformatics resources ncbi, ebi, expasy
  • Sequence and structure databases
  • Sequence analysis bimolecular sequence file formats, scoring matrices, sequence alignment, phylogeny
  • Genomics and proteomics large scale genome sequencing strategies comparative genomics understanding dna micro arrays and protein arrays
  • Molecular modeling and simulations basic concepts including concept of force fields
TS PGECET Chemical Engineering Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

Engineering mathematics: Unit 02


Calculus
  • Functions of single variable, limit, continuity, and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector densities
  • Directional derivatives, line, surface and volume integrals, Stokes, Gauss, and Green's theorems

Engineering mathematics: Unit 03


Differential equations
  • First order equations (linear and nonlinear), higher order linear differential equations with constant coefficients, Cauchy's and Euler's equations, initial and boundary value problems, Laplace transforms
  • Solutions of one dimensional heat and wave equations and Laplace equation

Engineering mathematics: Unit 04


Complex variables
  • Analytic functions, Cauchy's integral theorem, Taylor and Laurent series, residue theorem

Engineering mathematics: Unit 05


Probability and Statistics
  • Definitions of probability and sampling theorems, conditional probability, probability density function, mean, median, mode and standard deviation, random variables, exponential, Poisson, normal, and binomial distributions

Engineering mathematics: Unit 06


Numerical methods
  • Numerical solutions of linear and non-linear algebraic equations integration by trapezoidal and Simpson's rule, single and multi-step methods for differential equations

Chemical engineering: Unit 01


Process calculations and thermodynamics
  • Steady state mass and energy balances for reacting and non-reacting systems; use of tie components; recycle, bypass and purge calculations; degree of freedom analysis
  • First and second laws of thermodynamics
  • First law application to close and open systems
  • Second law and entropy thermodynamic properties of pure substances: Equation of state and departure function, properties of mixtures: Partial molar properties, fugacity, excess properties and activity coefficients
  • Phase equilibria: Predicting VLE of systems; chemical reaction equilibria

Chemical engineering: Unit 02


Fluid mechanics and mechanical unit operations
  • Fluid statics, Newtonian and non-Newtonian fluids, Bernoulli equation, macroscopic friction factors, energy balance, dimensional analysis, shell balances, flow through pipeline systems, flow meters, pumps and compressors, packed and fluidized beds
  • Elementary boundary layer theory, particle size and shape, particle distribution, size reduction and size separation; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, mixing and agitation; conveying of solids

Chemical engineering: Unit 03


Heat transfer
  • Conduction, convection and radiation, heat transfer coefficients, steady and unsteady heat conduction, boiling, condensation and evaporation; types of heat exchangers and evaporators and their design

Chemical engineering: Unit 04


Mass transfer
  • Fick's law, molecular diffusion in fluids, mass transfer coefficients, two film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage wise and continuous contacting operations and stage efficiencies
  • HTU and NTU concepts design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption, membrane separation: Microfiltration, ultrafiltration
  • Membrane separation: Nanofiltration and reverse osmosis

Chemical engineering: Unit 05


Chemical reaction engineering
  • Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors
  • Kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis, rate and performance equation for catalyst deactivation

Chemical engineering: Unit 06


Instrumentation and process control
  • Measurement of process variables; sensors, transducers and their dynamics, transfer functions and dynamic responses of simple systems, process reaction curve, controller modes (P, PI, and PID); control valves
  • Analysis of closed loop systems including stability, frequency response and controller tuning, cascade, feed forward control

Chemical engineering: Unit 07


Plant design and economics
  • Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow
  • Optimization in process design and sizing of chemical engineering equipment such as heat exchangers and multistage contactors

Chemical engineering: Unit 08


Chemical technology
  • Inorganic chemical industries; sulfuric acid, phosphoric acid, chlor-alkali industry NaOH, fertilizers (ammonia, urea, SSP, and TSP); natural products industries (pulp and paper, sugar, oil, and fats); petroleum refining and petrochemicals
  • Polymerization industries; polyethylene, polypropylene, PVC and polyester synthetic fibers
TS PGECET Civil Engineering Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

Engineering mathematics: Unit 02


Calculus
  • Functions of single variable, limit, continuity, and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities
  • Directional derivatives, line, surface and volume integrals, Stokes, Gauss, and Green's theorems

Engineering mathematics: Unit 03


Differential equations
  • First order equations (linear and nonlinear), higher order linear differential equations with constant coefficients, Cauchy's and Euler's equations, initial and boundary value problems, Laplace transforms
  • Solutions of one dimensional heat and wave equations and Laplace equation

Engineering mathematics: Unit 04


Complex variables
  • Analytic functions, Cauchy's integral theorem, Taylor, and Laurent series

Engineering mathematics: Unit 05


Probability and Statistics
  • Definitions of probability and sampling theorems, conditional probability, probability density function, mean, median, mode and standard deviation, random variables, exponential, Poisson, normal, and binomial distributions

Engineering mathematics: Unit 06


Numerical methods
  • Numerical solutions of linear and non-linear algebraic equations integration by trapezoidal and Simpson's rule, single and multi-step methods for differential equations

Structural engineering: Unit 01


Engineering mechanics
  • System of forces, free-body diagrams, equilibrium equations; internal forces in structures; friction and its applications; kinematics of point mass and rigid body; centre of mass; Euler’s equations of motion; impulse-momentum; energy methods
  • Principle of virtual work

Structural engineering: Unit 02


Solid mechanics
  • Bending moment and shear force in statically determinate beams
  • Simple stress and strain relationship: Stress and strain in two dimensions, principal stresses, stress transformation, Mohr's circle
  • Simple bending theory, flexural and shear stresses, unsymmetrical bending, shear centre
  • Thin walled pressure vessels, uniform torsion, buckling of column, combined and direct bending stresses

Structural engineering: Unit 03


Structural analysis
  • Analysis of statically determinate trusses, arches, beams, cables and frames, displacements in statically determinate structures and analysis of statically indeterminate structures by force/ energy methods
  • Analysis by displacement methods (slope deflection and moment distribution methods), influence lines for determinate and indeterminate structures

Structural engineering: Unit 04


Construction materials and management
  • Construction materials: Structural steel-composition, material properties and behaviour; concrete-constituents, short-term and long-term properties; bricks and mortar; timber; bitumen
  • Construction management: Types of construction projects; tendering and construction contracts; rate analysis and standard specifications; cost estimation; project planning and network analysis-PERT and CPM

Structural engineering: Unit 05


Concrete structures
  • Concrete technology-properties of concrete, basics of mix concrete design, working stress and limit state design concepts, analysis of ultimate load capacity and design of members subjected to flexure, shear, compression and torsion by limit state methods
  • Basic elements of prestressed concrete, analysis of beam sections at transfer and service loads
  • Losses of prestressed
  • Deflection of prestressed concrete simple beams

Structural engineering: Unit 06


Steel structures
  • Analysis and design of tension and compression members, beams, beam- columns, column bases
  • Connections-simple and eccentric, beam-column connections, plate girders, and trusses

Geotechnical engineering: Unit 01


Soil mechanics
  • Origin of soils, soil classification, three-phase system, fundamental definitions, relationship and interrelationships, permeability and seepage, effective stress principle, consolidation, compaction, shear strength
  • One-dimensional consolidation; shear strength; Mohr’s circle, stress-strain characteristics of clays and sand

Geotechnical engineering: Unit 02


Foundation engineering
  • Subsurface investigations-scope, drilling bore holes, sampling, penetration tests, plate load test
  • Earth pressure theories, effect of water table, layered soils
  • Stability of slopes-infinite slopes, finite slopes
  • Foundation types-foundation design requirements
  • Shallow foundations-bearing capacity, effect of shape, water table and other factors, stress distribution, settlement analysis in sands and clays
  • Deep foundations, pile types, dynamic and static formulae, load capacity of piles in sands and clays, negative skin friction

Water resources and environmental engineering: Unit 01


Fluid mechanics and hydraulics
  • Properties of fluids, principle of conservation of mass, momentum, energy and corresponding equations, potential flow, applications of momentum and Bernoulli’s equation, laminar and turbulent flow, flow in pipes, pipe networks
  • Concept of boundary layer and its growth
  • Uniform flow, critical flow and gradually varied flow in channels, specific energy concept, hydraulic jump
  • Forces on immersed bodies, flow measurements in channels, tanks and pipes
  • Dimensional analysis and hydraulic similitude
  • Kinematics of flow, velocity triangles, and specific speed of pumps and turbines

Water resources and environmental engineering: Unit 02


Hydrology
  • Hydrologic cycle, rainfall, evaporation, watershed concepts, infiltration, stage discharge relationships, unit hydrographs, flood estimation, reservoir capacity, reservoir and channel routing
  • Well hydraulics

Water resources and environmental engineering: Unit 03


Irrigation
  • Duty, delta, estimation of evapotranspiration
  • Crop water requirements
  • Design of: Lined and unlined canals, waterways, head works, gravity dams and spillways
  • Design of weirs on permeable foundation
  • Types of irrigation system, irrigation methods
  • Water logging and drainage

Water resources and environmental engineering: Unit 04


Water and wastewater engineering
  • Quality standards, basic unit processes and operations for water treatment
  • Drinking water standards, water requirements, basic unit operations and unit processes for water treatment, distribution of water
  • Sewage and sewerage treatment, quantity and characteristics of wastewater
  • Primary, secondary, and tertiary treatment of wastewater, sludge disposal, effluent discharge standards
  • Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment unit operations and unit processes of domestic wastewater, sludge disposal

Water resources and environmental engineering: Unit 05


Air pollution
  • Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limit

Water resources and environmental engineering: Unit 06


Municipal solid wastes
  • Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment, and disposal)

Water resources and environmental engineering: Unit 07


Noise pollution
  • Impacts of noise, permissible limits of noise pollution, measurement of noise, and control of noise pollution

Transportation and geomatics engineering: Unit 01


Transportation infrastructure
  • Highway alignment and engineering surveys; geometric design of highways-cross-sectional elements, sight distances, horizontal and vertical alignments; geometric design of railway track; airport runway length-calculation and correction
  • Taxiway, and exit taxiway design

Transportation and geomatics engineering: Unit 02


Highway pavements
  • Highway materials-(aggregate and bitumen)-desirable properties and quality control tests; design factors for flexible and rigid pavements; design of flexible pavement using IRC: 37-2012; design of rigid pavements using IRC: 58-2011

Transportation and geomatics engineering: Unit 03


Traffic engineering
  • Traffic studies on flow, speed, travel time-delay and O-D study, PCU, peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data; microscopic and macroscopic parameters of traffic flow, fundamental relationships
  • Control devices, signal design by Webster’s method; types of intersections and channelization; highway capacity and level of service of rural highways and urban roads

Transportation and geomatics engineering: Unit 04


Principles of surveying
  • Errors and their adjustment; maps-scale, coordinate system; distance and angle measurement-levelling and trigonometric levelling; traversing and triangulation survey; total station; horizontal and vertical curves

Transportation and geomatics engineering: Unit 05


Photogrammetry
  • Scale, flying height; remote sensing-basics, platform and sensors, visual image interpretation; basics of geographical information system (GIS) and geographical positioning system (GPS)
TS PGECET Computer Science and Information Technology Syllabus

Engineering mathematics: Unit 01


Discrete mathematics
  • Propositional and first order logic, sets, relations, functions, partial orders and lattices, groups, graphs: Connectivity, matching, coloring
  • Combinatorics: Counting, recurrence relations, generating functions

Engineering mathematics: Unit 02


Linear algebra
  • Matrices, determinants, system of linear equations, Eigenvalues and Eigenvectors, LU decomposition

Engineering mathematics: Unit 03


Calculus
  • Limits, continuity, and differentiability, maxima and minima, mean value theorem, integration

Engineering mathematics: Unit 04


Probability
  • Random variables: Uniform, normal, exponential, Poisson, and binomial distributions
  • Mean, median, mode, and standard deviation
  • Conditional probability and Bayes theorem

Computer science and information technology: Unit 01


Digital logic
  • Boolean algebra, logic gates, flip-flops and counters, combinational and sequential circuits: Minimization, number representations and computer arithmetic (fixed and floating point representations)

Computer science and information technology: Unit 02


Computer organization and architecture
  • Machine instructions and addressing modes, ALU, data and control unit, instruction pipelining, memory hierarchy: Cache, main memory and secondary storage, I/O interface (interrupt and DMA)

Computer science and information technology: Unit 03


Programming and data structures
  • Programming in C, functions, parameter passing, recursion, structured data types: Arrays, structure, union, strings, pointers, file handling
  • Arrays, stacks, queues, linked lists, trees: Binary trees, binary search trees, tree operations, heaps, graph terminology and representation, graph traversal techniques

Computer science and information technology: Unit 04


Algorithms
  • Searching, sorting, hashing, asymptotic notations, time and space complexity
  • Algorithm design techniques: Greedy, dynamic programming and divide‐and‐conquer. Graph traversal techniques, spanning trees, shortest path algorithms

Computer science and information technology: Unit 05


Theory of computation
  • Regular expressions and finite automata, context-free grammars and pushdown automata, regular and context-free languages, pumping lemma, turing machines, and undecidability

Computer science and information technology: Unit 06


Compiler design
  • Lexical analysis, parsing, syntax-directed translation, runtime environments, intermediate code generation, basics of code optimization

Computer science and information technology: Unit 07


Operating system
  • Processes, threads, CPU scheduling, inter‐process communication, concurrency and synchronization, deadlock, memory management and virtual memory, file systems

Computer science and information technology: Unit 08


Databases
  • ER‐diagrams, relational model: Relational algebra, tuple relational calculus, SQL, integrity constraints, normal forms, file organization: Indexing, B trees and B+ trees, transactions and concurrency control

Computer science and information technology: Unit 09


Computer networks
  • Concept of layering, flow and error control techniques, switching, IPv4/ IPv6, routers, and routing algorithms (distance vector, link state)
  • TCP/ UDP and sockets, congestion control
  • Application layer protocols: DNS, SMTP, POP, FTP, HTTP
  • Basics of Wi-Fi, network security: Authentication, basics of public key and private key cryptography, digital signatures and certificates, firewalls

Computer science and information technology: Unit 10


Software engineering
  • Software process models, data flow diagram, UML diagrams, requirements engineering, design, software testing, and maintenance

Computer science and information technology: Unit 11


Web technologies
  • XML-documents and vocabularies-versions and declaration, namespaces Javascript and XML: Ajax-DOM based XML processing, event-oriented parsing: SAX-transforming XML documents, selecting XML data: XPATH-template based transformations
  • Selecting XML data: XSLT-displaying XML documents in browsers
  • Separating programming and presentation: JSP technology introduction-JSP and servlets-running JSP applications
  • Web services: JAX-RPC-concepts, writing a Java web service client, describing web services: WSDL-representing data types: XML schema-communicating object data: SOAP related technologies
TS PGECET Electrical Engineering Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

Engineering mathematics: Unit 02


Calculus
  • Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, Fourier series
  • Vector identities, directional derivatives, line, surface and volume integrals, Stokes, Gauss, and Green's theorems

Engineering mathematics: Unit 03


Differential equations
  • First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchy's and Euler's equations, initial and boundary value problems
  • Partial Differential Equations and variable separable method

Engineering mathematics: Unit 04


Complex variables
  • Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent's series, residue theorem, solution integrals

Engineering mathematics: Unit 05


Transforms
  • Fourier series representation of continuous periodic signals, sampling theorem, Fourier, Laplace, and Z-transforms

Engineering mathematics: Unit 06


Probability and Statistics
  • Probability and sampling theorems, conditional probability, probability density function, mean, median, mode and standard deviation, random variables, discrete and continuous distributions, exponential, Poisson, normal, and binomial distribution
  • Correlation and regression analysis
  • Numerical methods: Solutions of nonlinear algebraic equations, single and multi-step methods for differential equations

Electrical engineering: Unit 01


Electric circuits and fields
  • Ideal voltage and current sources, dependent sources, R, L, C elements, KCL, KVL, node and mesh analysis, Thevenin’s, Nortons, superposition and maximum power transfer theorems, transient response of DC and AC networks
  • Sinusoidal steady state analysis, resonance, networks graph theory, two-port network, balanced three phase circuits
  • Coulomb’s law, electrical field intensity, and potential due to point, line
  • Plane and spherical charge distribution
  • Gauss’s law, Ampere’s law, Biot-savart’s law, inductance, dielectrics, and capacitance

Electrical engineering: Unit 02


Electrical machines
  • Single phase transformer-equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; three phase transformers-connections, parallel operation; autotransformer; electromechanical energy conversion principles
  • DC machines-types, windings, generator and motor characteristics, armature reaction and commutation, starting and speed control of DC motors; AC machines-three phase induction motors-principles, types, performance, torque speed characteristics
  • AC machines-starting and speed control; single phase induction motors; synchronous machines-performance, regulation and parallel operation of generators, synchronous motor starting, characteristics and applications; servo and stepper motors

Electrical engineering: Unit 03


Powersystems
  • Basic power generation concepts; transmission line models and performance; cable performance, insulators; corona and radio interference; distribution systems; per-unit quantities; bus impedance and admittance matrices; load flow analysis
  • Voltage and frequency control; power factor correction; symmetrical components; fault analysis; principles of over-current, differential and distance protection; solid state relays and digital protection; circuit breakers; system stability concepts
  • Swing curves and equal area criterion; HVDC transmission and facts concepts, economic load dispatch with and without network losses

Electrical engineering: Unit 04


Control systems
  • Mathematical modeling and representation of systems, feedback principle, transfer function, block diagrams and signal flow graphs, transient and steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, bode plots
  • Root loci, stability analysis, lag, lead, and lead-lag compensators; P, PI, and PID controllers; state space model, solution of state equation, controllability and observability

Electrical engineering: Unit 05


Electrical and electronic measurements
  • Bridges and potentiometers; PMMC, moving iron, dynamometer and induction type instruments; measurement of voltage, current, power, energy, and power factor; instrument transformers; digital voltmeters and multimeters; phase, time and frequency measurement
  • Q-meters; oscilloscopes; error analysis

Electrical engineering: Unit 06


Analog and digital electronics
  • Characteristics of diodes, BJT, FET; amplifiers-biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers-characteristics and applications; simple active filters; VCOs and timers
  • Combinational and sequential logic circuits; multiplexer; Schmitt trigger; multi-vibrators; sample and hold circuits; A/D and D/A converters; 8085 microprocessor basics, architecture, programming and interfacing

Electrical engineering: Unit 07


Power electronics and drives
  • Semiconductor power diodes, thyristors, triacs, GTOS, MOSFETS, and IGBTs-static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters-fully controlled and half controlled
  • Principles of choppers and inverters; basic concepts of adjustable speed DC and AC drives
TS PGECET Electronics and Communication Engineering Syllabus

Engineering mathematics: Unit 01


Linear algebra
  • Vector space, basis, linear dependence and independence, matrix algebra, eigenvalues and eigenvectors, rank, solution of linear equations-existence and uniqueness

Engineering mathematics: Unit 02


Calculus
  • Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series

Engineering mathematics: Unit 03


Differential equations
  • First order equations (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchy's and Euler's equations, initial and boundary value problems
  • Partial Differential Equations and variable separable method

Engineering mathematics: Unit 04


Complex variables
  • Analytic functions, Cauchy's integral formula: Cauchy’s integral theorem, Taylor's and Laurent' Series, residue theorem

Engineering mathematics: Unit 05


Probability and Statistics
  • Probability, joint and conditional probability, discrete and continuous random variables, probability distribution and density functions
  • Exponential, Poisson, normal and binomial distributions functions, mean, mean square and standard deviation

Engineering mathematics: Unit 06


Numerical methods
  • Solutions of nonlinear equations, single and multi-step methods for differential equations

Electronics and communication engineering: Unit 01


Networks
  • Definition and properties of Laplace transform, network solution methods: Nodal and mesh analysis
  • Network theorems: Superposition, Thevenin and Norton's maximum power transfer; Wye-Delta transformation; steady state sinusoidal analysis using phasors; time domain analysis of simple linear circuits, solution of network equations using Laplace transform
  • Frequency domain analysis of RLC circuits; 2-port network parameters: Driving point and transfer functions. State equations for networks

Electronics and communication engineering: Unit 02


Signals and systems
  • Continuous-time and discrete-time Fourier series, continuous-time and discrete-time Fourier transform, DFT and FFT, Z-transform
  • Sampling theorem
  • Linear time-invariant (LTI) systems: Definitions and properties; causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay

Electronics and communication engineering: Unit 03


Electronic devices
  • Energy bands in intrinsic and extrinsic silicon
  • Carrier transport in silicon: Diffusion current, drift current, mobility, and resistivity
  • Generation and recombination of carriers
  • P-N Junction diode, Zener diode, tunnel diode, BJT, JFET, MOS capacitor, MOSFET, LED, PIN and avalanche photodiode, basics of lasers
  • Device technology: Integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS process

Electronics and communication engineering: Unit 04


Analog circuits
  • Small signal equivalent circuits of diodes, BJTs, MOSFETs, and analog CMOS
  • Simple diode circuits, clipping, clamping, rectifier
  • Biasing and bias stability of BJT and FET amplifiers
  • Amplifiers: Single-and multi-stage, differential, operational, feedback, and power amplifiers
  • Frequency response of an amplifiers
  • Simple op-amp circuits
  • Filters
  • Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations
  • Function generators and wave-shaping circuits, 555 timers
  • Power supplies, regulation

Electronics and communication engineering: Unit 05


Digital circuits
  • Boolean algebra, minimization of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS, number systems)
  • Combinatorial circuits: Arithmetic circuits, code converters, multiplexers, decoders, PROMs and PLAs
  • Sequential circuits: Latches and flip-flops, counters, and shift-registers
  • Sample and hold circuits, ADCs, DACs
  • Semiconductor memories: ROM, SRAM and DRAM, microprocessor (8085): Architecture, addressing modes, programming, memory and I/O Interfacing

Electronics and communication engineering: Unit 06


Control systems
  • Basic control system components; feedback principle; transfer function; block diagram representation; signal flow graph; transient and steady-state analysis of LTI systems; frequency response; Routh-Hurwitz and Nyquist stability criteria
  • Bode and root-locus plots; lag, lead and lag-lead compensation; state variable model and solution of state equation of LTI systems

Electronics and communication engineering: Unit 07


Communications
  • Deterministic and random signals, types of noise, autocorrelation, power spectral density, properties of white noise, filtering of random signals through LTI systems
  • Analog communication systems: Amplitude and angle modulation and demodulation systems, spectra of AM and FM, super-heterodyne receivers, circuits for analog communications; information theory: Entropy, mutual information and channel capacity theorem;
  • Digital communications: Sampling theory pulse code modulation (PCM), differential pulse code modulation (DPCM); digital modulation schemes: Amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK, QAM); matched filter receiver
  • Calculation of bandwidth, SNR and BER for digital modulation schemes; fundamental of error correction, hamming codes; timing and frequency synchronization, inter-symbol interference and its mitigation; basics of TDMA, FDMA, and CDMA

Electronics and communication engineering: Unit 08


Electromagnetics
  • Maxwell's equations: Differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector; plane waves and properties: Reflection and refraction, polarization, phase and group velocity
  • Plane waves and properties: Propagation through various media, skin depth; transmission lines: Equations, characteristic impedance, impedance matching, impedance transformation, S-parameters
  • Smith chart: Waveguides-modes, boundary conditions, cut-off frequencies, dispersion relations
  • Antennas: Antenna types, radiation pattern, gain and directivity, return loss, basics of radar
TS PGECET Environmental Management Syllabus

Elementary mathematics: Unit 01


Statistics
  • Solutions of simultaneous linear equations, quadratic equations, progressions, perambulations and combinations, concepts of matrices and determinants. sample mean and variance, random variable, distributed and continuous distributions
  • Mean and variance of distribution, correlation, coefficient, confidence intervals, goodness of fit, test, pairs of measurements, fitting straight lines

Computer science: Unit 01


Introduction to computers and programming
  • Components of computers, characteristics of computer, modes of operation, type of computer algorithms, flowcharts, programming languages, operating systems, fundamentals of C, structure of C, variables and constants, arithmetic and logical expression

Ecology and environment: Unit 01


Nature of ecosystems
  • Energy flow in ecosystems-energy fixation by autotrophs, energy beyond the producers, biogeochemical cycles and ecosystems, ecology of populations-population growth, age structure, equilibrium level, dynamics of ecological communities

Microbiology: Unit 01


Major characteristics of microorganisms
  • Bacteria, fungi, molds and yeasts-algae, protozoa-viruses

Microbiology: Unit 02


Cultivation of microorganisms
  • Aerobic and anaerobic cultivation, isolation, enumeration and preservation of microorganisms

Microbiology: Unit 03


Control of microorganisms
  • Physical and chemical agents

Microbiology: Unit 04


Microorganisms in aerobic and anaerobic biological waste treatment
  • Major groups of microbes and their role

Microbiology: Unit 05


Microorganisms, growth kinetics
  • Bacterial growth curve, various phases of growth, growth rate and doubling time

Environmental chemistry: Unit 01


Basic concepts and scope of environmental chemistry
  • Environmental segments

Environmental chemistry: Unit 02


Atmosphere
  • Structure, chemical and photochemical reactions, and ozone chemistry, greenhouse effect

Environmental chemistry: Unit 03


Hydrosphere
  • Hydrologic cycle, chemistry of water, and wastewater

Environmental chemistry: Unit 04


Lithosphere
  • Micro and macro nutrients, wastes and pollution of soil, air, and water

Environmental chemistry: Unit 05


Environmental effects of pollution
  • Health effects of pollution

Pollution control engineering: Unit 01


Solid, liquid, and gaseous wastes
  • Various pollutants and their harmful effects

Pollution control engineering: Unit 02


Water quality
  • Water purification systems

Pollution control engineering: Unit 03


Wastewater characteristics
  • Primary/ secondary treatment methods

Pollution control engineering: Unit 04


Air pollution control methods

    Geospatial technology: Unit 01


    Origin and age of the earth
    • Internal constitution of the earth, geological processes-exegetic and endogenic, ligneous, metamorphic and sedimentary rocks, distinguishing features of these three types of rocks, basic principle of structural geology, geology of dams and reservoirs

    Geospatial technology: Unit 02


    Geomorphic cycle
    • Geomorphic agents, definition of weathering, types of weathering physical and chemical, definition of erosion and denudation, cycle of erosion, landforms created by geomorphic agents

    Geospatial technology: Unit 03


    Map terminology
    • Map reading, topographic map, conventional symbols, locating points, and map projections and classification of maps

    Geospatial technology: Unit 04


    Aerial photogrammetry
    • Definition, photo scale, classification of aerial photographs, air photo interpretation key elements, photogrammetric terminology

    Geospatial technology: Unit 05


    Remote sensing
    • Electromagnetic energy, electromagnetic spectrum, various satellites and sensors, latest advancements in satellite remote sensing, general knowledge on Indian remote sensing programmes

    Fundamentals of surface hydrology: Unit 01


    Hydrologic cycle
    • Precipitation: Different types and forms of precipitation and their mechanism. Rain gauges

    Fundamentals of surface hydrology: Unit 02


    Evaporation and transpiration
    • Concepts, measurements and factors affecting evaporation, and transpiration

    Fundamentals of surface hydrology: Unit 03


    Infiltration
    • Concept, measurement and factors affecting infiltration, runoff, definition and factors affecting runoff, stream gauging-computation of runoff

    Fundamentals of ground water hydrology: Unit 01


    Occurrence of ground water in consolidated and unconsolidated formations
    • Types of aquifers

    Fundamentals of ground water hydrology: Unit 02


    Properties
    • Porosity, specific yield, storativity, hydraulic conductivity and transmissivity-Darcy’s law, groundwater management, artificial recharging methods

    Fundamentals of ground water hydrology: Unit 03


    Types of wells
    • Open wells, tube wells, construction of wells
    TS PGECET Food Technology Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Limit, continuity, and differentiability, partial derivatives, maxima and minima, sequences and series, test for convergence, Fourier series

    Engineering mathematics: Unit 03


    Differential equations
    • Linear and nonlinear first order ODEs, higher order ODEs with constant coefficients, Cauchy’s and Euler’s equations, Laplace transforms, PDE-Laplace, heat, and wave equations

    Engineering mathematics: Unit 04


    Probability and Statistics
    • Probability and sampling theorem, conditional probability, mean, median, mode and standard deviation, random variables, Poisson, normal, and binomial distributions, correlation and regression analysis

    Engineering mathematics: Unit 05


    Numerical methods
    • Solution of linear and nonlinear algebraic equations, integration of trapezoidal and Simpson’s rule, single, and multistep methods for differential equations

    Food chemistry and nutrition: Unit 01


    Food chemistry
    • Carbohydrates-structure and functional properties of mono, di, and oligo polysaccharides including starch, cellulose, pectic substances and dietary fibre; proteins-classification and structure of proteins in food
    • Lipids-classification and structure of lipids, rancidity of fats, polymerization and polymorphism; pigments-carotenoids, chlorophylls, anthocyanins, tannins and myoglobin; food flavours-terpenes, esters, ketones and quinones
    • Enzymes-Enzymatic and non-enzymatic browning in different foods

    Food chemistry and nutrition: Unit 02


    Nutrition
    • Balanced diet, essential amino acids and fatty acids, PER, water soluble and fat soluble vitamins, role of minerals in nutrition, antinutrients, nutrition deficiency diseases, nutraceuticals

    Food microbiology and biotechnology: Unit 01


    Food microbiology
    • Characteristics of microorganisms-morphology, structure and detection of bacteria, yeast and mold in food, spores and vegetative cells; microbial growth in food-intrinsic and extrinsic factors, growth and death kinetics
    • Characteristics of microorganisms-serial dilution method for quantification; food spoilage-contributing factors, spoilage bacteria, microbial spoilage of milk and milk products, meat and meat products; foodborne disease-toxins produced by staphylococcus
    • Foodborne disease-clostridium and aspergillus; bacterial pathogens-salmonella, bacillus, listeria, escherichia coli, shigella, campylobacter

    Food microbiology and biotechnology: Unit 02


    Biotechnology
    • Fermented foods-buttermilk, yoghurt, cheese, sausage, alcoholic beverage, vinegar, wine, beer, whisky, sauerkraut, soya sauce, and traditional fermented foods

    Food technology: Unit 01


    Cereals, pulses, and oil seeds
    • Composition, nutritive value, processing methods and products of: (i) Rice, wheat, and maize, barley, oats, and minor millets; (ii) bengal gram, red gram, green gram, black gram, chickpeas, (iii) ground nut, soya bean, sunflower, and other oil seeds

    Food technology: Unit 02


    Fruits, vegetables, and plantation crops
    • Extraction, clarification, concentration and packaging of fruit juice, production of jam, jelly, marmalade, squash, candies, and pickles, pectin from fruit waste, tea, coffee, chocolate and essential oils from spices

    Food technology: Unit 03


    Meat, fish, poultry, and milk
    • Post mortem changes of meat, freezing, aging, pickling, smoking and tenderization of meat, drying and canning of fish
    • Structure, composition, nutritive value and functional properties of eggs and its preservation by different methods

    Food technology: Unit 04


    Milk and milk products processing
    • Milk processing flow sheet, filtration/ clarification, storage of milk, standardization-simple problems in standardization, homogenization, pasteurization types of pasteurization process
    • Manufacture of cream, butter, ghee, milk powder, cheese

    Food engineering: Unit 01


    Fluid mechanics
    • Nature of fluids, flow properties of fluids, flow through pipes and fittings, flow measurement, transportation of fluids-pumps, compressors, and blowers

    Food engineering: Unit 02


    Heat transfer
    • Heat transfer by conduction, convection, radiation, boiling and condensation, steady and unsteady state heat transfer

    Food engineering: Unit 03


    Unit operations
    • Size reduction, homogenization, filtration, sedimentation, centrifugation, sieving, mixing and agitation, extraction, crystallization, evaporation, drying and extrusion
    • Types of equipment used in each unit operation, their selection, applications in food industry

    Food quality and standards: Unit 01


    Food quality
    • Food quality and quality attributes-classification of quality attributes and their role in food quality
    • Quality assessment of food materials-fruits and vegetables, cereals and pulses, dairy products, meat, poultry, egg and processed food products sensory evaluation of food quality and its methods food adulteration and food safety

    Food quality and standards: Unit 02


    Standards
    • Food safety and regulations 2011-scope; definitions and standards of quality and packaging
    • FSMS-22000:2005-various elements included in the standard, introduction to the family of ISO 22000 standards, comparison of ISO 9001:2008 vs. ISO 22000:2005, HACCP-terminology, principles, identification of CCPS
    • Application of HACCP System and the logic sequence involved
    • Codex alimentarius; food safety and standards authority of India (FSSAI)
    TS PGECET Geoengineering and Geoinformatics Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Functions of single variable, limit, continuity, and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities
    • Directional derivatives, line, surface and volume integrals, stokes, gauss and green's theorems

    Engineering mathematics: Unit 03


    Complex variables
    • Analytic functions, Cauchy's integral theorem, Taylor, and Laurent series

    Engineering mathematics: Unit 04


    Probability and Statistics
    • Definitions of probability and sampling theorems, conditional probability, mean, median, mode, and standard deviation, random variables, exponential, Poisson, normal and binomial distributions

    Engineering mathematics: Unit 05


    Programming in C
    • Variables, data types, expressions, control structures, arrays, functions, pointers, structures

    Geoengineering and geoinformatics: Unit 01


    Geomorphic processes and agents
    • Development and evolution of landforms; slope and drainage; processes in deep oceanic and near-shore regions; quantitative and applied geomorphology

    Geoengineering and geoinformatics: Unit 02


    Mechanism of rock deformation
    • Primary and secondary structures; geometry and genesis of folds, faults, joints and unconformities; cleavage, schistosity and lineation; methods of projection; tectonites and their significance; shear zones; superposed folding; basement-cover relationship
    • Crystallography-symmetry, forms and twinning; crystal chemistry; optical mineralogy, classification of minerals, diagnostic physical and optical properties of rock-forming minerals

    Geoengineering and geoinformatics: Unit 03


    Engineering properties of rocks and soils
    • Rocks as construction materials; role of geology in the construction of engineering structures including dams, tunnels and excavation sites; natural hazards
    • Ground water geology-exploration, well hydraulics and water quality
    • Basic principles of remote sensing-energy sources and radiation principles, atmospheric absorption, interaction of energy with earth’s surface, aerial-photo interpretation, multispectral remote sensing in visible, infrared
    • Thermal IR and microwave regions, digital processing of satellite images
    • GIS-basic concepts, raster, and vector mode operations

    Geoengineering and geoinformatics: Unit 04


    The earth as a planet
    • Different motions of the earth; gravity field of the earth, Clairaut’s theorem, size and shape of earth; geomagnetic field, paleomagnetism; geothermics and heat flow; seismology and interior of the earth
    • Variation of density, velocity, pressure, temperature, electrical and magnetic properties of the earth; earthquakes causes and measurements, magnitude and intensity, focal mechanisms, earthquake quantification, source characteristics
    • Seismotectonics, and seismic hazards; digital seismographs

    Geoengineering and geoinformatics: Unit 05


    Continents
    • Earth composition
    • Earth-orbit

    Geoengineering and geoinformatics: Unit 06


    Oceans
    • Depth, bottom, relief

    Geoengineering and geoinformatics: Unit 07


    Minerals
    • Physical properties of minerals

    Geoengineering and geoinformatics: Unit 08


    Surveying methods
    • Principles of surveying; errors and their adjustment; maps-scale, coordinate system; distance and angle measurement-levelling and trigonometric levelling; traversing and triangulation survey; total station; horizontal and vertical curves
    • Photogrammetry-scale, flying height; remote sensing-basics, platform and sensors, visual image interpretation; basics of geographical information system (GIS) and geographical positioning system (GPS)

    Geoengineering and geoinformatics: Unit 09


    Study of rainfall
    • Estimation of runoff and evapotranspiration, water table

    Geoengineering and geoinformatics: Unit 10


    Environment
    • Meaning, scope, components environments

    Geoengineering and geoinformatics: Unit 11


    Soils
    • Texture, strengths, porosity, and permeability
    TS PGECET Instrumentation Engineering Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, Fourier series
    • Vector identities, directional derivatives, line, surface and volume integrals, Stokes, Gauss, and Green's theorems

    Engineering mathematics: Unit 03


    Differential equations
    • First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, method of variation of parameters, Cauchy's and Euler's equations, initial and boundary value problems
    • Partial Differential Equations and variable separable method

    Engineering mathematics: Unit 04


    Complex variables
    • Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent's series, residue theorem, solution integrals

    Engineering mathematics: Unit 05


    Probability and Statistics
    • Probability, sampling theorems, conditional probability, probability density function, mean, median, mode and standard deviation, random variables, discrete and continuous distributions, exponential, Poisson, normal and binomial distribution
    • Correlation and regression analysis

    Engineering mathematics: Unit 06


    Numerical methods
    • Solutions of nonlinear algebraic equations, single and multi-step methods for differential equations

    Instrumentation engineering: Unit 01


    Basics of circuits and measurement systems
    • Kirchoff's laws, mesh, and nodal analysis
    • Circuit theorems
    • One-port and two-port network functions
    • Static and dynamic characteristics of Measurement Systems
    • Error and uncertainty analysis
    • Statistical analysis of data and curve fitting

    Instrumentation engineering: Unit 02


    Transducers, mechanical measurement and industrial instrumentation
    • Resistive, capacitive, inductive and piezoelectric transducers and their signal conditioning
    • Measurement of displacement, velocity and acceleration (translational and rotational), force, torque, vibration and shock
    • Measurement of pressure, flow, temperature and liquid level
    • Measurement of Ph, conductivity, viscosity and humidity, LVDT, strain gauge and Hall effect sensors

    Instrumentation engineering: Unit 03


    Analog electronics
    • Characteristics of diode, BJT, JFET, and MOSFET
    • Diode circuits
    • Transistors at low and high frequencies, amplifiers, single and multi-stage
    • Feedback amplifiers
    • Operational amplifiers, characteristics and circuit configurations
    • Instrumentation amplifier
    • Precision rectifier
    • V-to-i and i-to-v converter
    • Op-amp based active filters
    • Oscillators and signal generators

    Instrumentation engineering: Unit 04


    Digital electronics
    • Combinational logic circuits, minimization of boolean functions
    • IC families, TTL, MOS, and CMOS
    • Arithmetic circuits
    • Comparators, Schmitt trigger, timers, and mono-stable multi-vibrator
    • Sequential circuits, flip-flops, counters, shift registers
    • Multiplexer, S/H circuit
    • Analog to-digital and digital to-analog converters
    • Basics of number system
    • Microprocessor applications, memory, and input-output interfacing
    • Microcontrollers

    Instrumentation engineering: Unit 05


    Signals, systems, and communications
    • Periodic and aperiodic signals
    • Impulse response, transfer function and frequency response of first-and second order systems
    • Fourier transform, Laplace transform, Z-transform, convolution, correlation, and characteristics of linear time invariant systems
    • Discrete time system, impulse and frequency response
    • Pulse transfer function
    • IIR and FIR filters
    • Amplitude and frequency modulation and demodulation
    • Sampling theorem, pulse code modulation
    • Frequency and time division multiplexing
    • Amplitude shift keying, frequency shift keying, and pulse shift keying for digital modulation

    Instrumentation engineering: Unit 06


    Electrical and electronic measurements
    • Bridges and potentiometers, measurement of R, L, and C
    • Measurements of voltage, current, power, power factor, and energy
    • AC and DC current probes
    • Extension of instrument ranges
    • Q-meter and waveform analyzer
    • Digital voltmeter and multimeter
    • Time, phase, and frequency measurements
    • Cathode ray oscilloscope
    • Serial and parallel communication
    • Shielding and grounding

    Instrumentation engineering: Unit 07


    Control systems and process control
    • Feedback principles
    • Signal flow graphs
    • Transient response, steady state-errors
    • Routh and Nyquist criteria
    • Bode plot, root loci
    • Time delay systems
    • Phase and gain margin
    • State space representation of systems
    • Mechanical, hydraulic, and pneumatic system components
    • Synchro pair, servo, and step motors
    • On-off, cascade, P, PI, PID, feed forward and derivative controller, fuzzy controllers

    Instrumentation engineering: Unit 08


    Analytical, optical, and biomedical instrumentation
    • Mass spectrometry
    • UV, visible, and IR spectrometry
    • X-ray and nuclear radiation measurements
    • Optical sources and detectors, LED, laser, photodiode, photoresistor, and their characteristics
    • Interferometers, applications in metrology
    • Basics of fiber optics
    • Biomedical instruments, EEG, ECG, and EMG
    • Clinical measurements
    • Ultrasonic transducers and Ultrasonography
    • Principles of Computer Assisted Tomography
    TS PGECET Mechanical Engineering Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Functions of single variable, limit, continuity, and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities
    • Directional derivatives, line, surface and volume integrals, Stokes, Gauss, and Green's theorems

    Engineering mathematics: Unit 03


    Differential equations
    • First order equations (linear and nonlinear), higher order linear differential equations with constant coefficients, Cauchy's and Euler's equations, initial and boundary value problems, Laplace transforms
    • Solutions of one dimensional heat and wave equations and Laplace equation

    Engineering mathematics: Unit 04


    Complex variables
    • Analytic functions, Cauchy's integral theorem, Taylor, and Laurent series

    Engineering mathematics: Unit 05


    Probability and Statistics
    • Definitions of probability and sampling theorems, conditional probability, mean, median, mode, and standard deviation, random variables, exponential, Poisson, normal and binomial distributions

    Engineering mathematics: Unit 06


    Numerical methods
    • Numerical solutions of linear and non-linear algebraic equations, integration by trapezoidal and Simpson's rule, single and multi-step methods for differential equations

    Applied mechanics and design: Unit 01


    Engineering mechanics
    • Free body diagrams and equilibrium; friction, rolling friction, belt-pulley, screw jack, wedge trusses and frames; virtual work; kinematics and dynamics of particles and rigid bodies in plane motion
    • Impulse and momentum (linear and angular) and energy formulations; impact

    Applied mechanics and design: Unit 02


    Strength of materials
    • Stress and strain, stress-strain relationship and elastic constants, Poisson’s ratio, Mohr's circle plane stress and plane strain, thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams
    • Torsion of circular shafts; Euler's theory of columns; strain energy methods; thermal stresses, testing of materials with UTM, hardness and impact strength

    Applied mechanics and design: Unit 03


    Theory of machines
    • Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of slider-crank mechanism; gear and gear trains; flywheels, gyroscope and governors, balancing of reciprocating and rotary masses

    Applied mechanics and design: Unit 04


    Vibrations
    • Free and forced vibration of single degree of freedom systems; effect of damping; vibration isolation; resonance, critical speeds of shafts

    Applied mechanics and design: Unit 05


    Machine design
    • Design for static and dynamic loading; failure theories; fatigue strength the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints, shafts, spur gears, rolling and sliding contact bearings
    • Brakes and clutches and springs

    Fluid mechanics and thermal sciences: Unit 01


    Fluid mechanics
    • Fluid properties; fluid statics, manometry, buoyancy; forces on submerged bodies, stability of floating bodies, fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; viscous flow of incompressible fluids
    • Boundary layer; elementary turbulent flow; flow through pipes, head losses in pipes, bends etc

    Fluid mechanics and thermal sciences: Unit 02


    Heat-transfer
    • Modes of heat transfer; one dimensional heat conduction, resistance concept, electrical analogy, heat transfer through fins, unsteady heat conduction, dimensionless parameters in free and forced convective heat transfer
    • Various correlations for heat transfer in flow over flat plates and through pipes; thermal boundary layer; effect of turbulence; radiative heat transfer, black and grey surfaces, shape factors, network analysis; heat exchanger performance
    • LMTD and NTU methods

    Fluid mechanics and thermal sciences: Unit 03


    Thermodynamics
    • Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics
    • Thermodynamics: Thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations

    Fluid mechanics and thermal sciences: Unit 04


    Applications
    • Power engineering: Air compressors-reciprocating and rotary compressors, Rankine, Brayton cycles with regeneration and reheat
    • I.C. Engines: Air-standard Otto, diesel cycles
    • Refrigeration and air conditioning: Vapour refrigeration cycle, heat pumps, gas refrigeration, reverse Brayton cycle; moist air: Psychrometric chart, basic psychrometric processes
    • Turbomachinery: Pelton wheel, Francis and Kaplan turbines-impulse and reaction principles, velocity diagrams

    Materials, manufacturing, and industrial engineering: Unit 01


    Engineering materials
    • Structure and properties of engineering materials, heat treatment, stress-strain diagrams for engineering materials, iron-carbon diagram

    Materials, manufacturing, and industrial engineering: Unit 02


    Metal casting
    • Design of patterns, moulds and cores; solidification and cooling; riser and gating design, design considerations

    Materials, manufacturing, and industrial engineering: Unit 03


    Metal forming
    • Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy

    Materials, manufacturing, and industrial engineering: Unit 04


    Joining process
    • Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding

    Materials, manufacturing, and industrial engineering: Unit 05


    Machining and machine tool operations
    • Mechanics of machining, basic machine tool, single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of nontraditional machining processes; principles of work holding
    • Principles of design of jigs and fixtures

    Materials, manufacturing, and industrial engineering: Unit 06


    Metrology and inspection
    • Limits, fits, and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly

    Materials, manufacturing, and industrial engineering: Unit 07


    Computer integrated manufacturing
    • Basic concepts of CAD/ CAM and their integration tools

    Materials, manufacturing, and industrial engineering: Unit 08


    Production planning and control
    • Forecasting models, aggregate production planning, scheduling, materials requirement planning

    Materials, manufacturing, and industrial engineering: Unit 09


    Inventory control
    • Deterministic models; safety stock inventory control systems.

    Materials, manufacturing, and industrial engineering: Unit 10


    Operations research
    • Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT, and CPM
    TS PGECET Metallurgical Engineering Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Limit, continuity, and differentiability; partial derivatives; maxima and minima; sequences and series; test for convergence; Fourier series

    Engineering mathematics: Unit 03


    Vector calculus
    • Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss, and Green's theorems

    Engineering mathematics: Unit 04


    Differential equations
    • Linear and non-linear first order odes; higher order linear odes with constant coefficients; Cauchy's and Euler's equations; Laplace transforms; PDEs-Laplace, heat, and wave equations

    Engineering mathematics: Unit 05


    Probability and Statistics
    • Probability and sampling theorem, conditional probability, probability density function, mean, median, mode and standard deviation; random variables; exponential, Poisson, normal and binomial distributions; correlation and regression analysis

    Engineering mathematics: Unit 06


    Numerical methods
    • Solutions of linear and non-linear algebraic equations; integration of trapezoidal and Simpson's rule; single and multi-step methods for differential equations

    Metallurgical engineering: Unit 01


    Thermodynamics and rate processes
    • Laws of thermodynamics, activity, equilibrium constant, applications to metallurgical systems, solutions, phase equilibria, Ellingham and phase stability diagrams, thermodynamics of surfaces, interfaces and defects, adsorption and segregation
    • Basic kinetic laws, order of reactions, rate constants and rate limiting steps; principles of electro chemistry-single electrode potential, electrochemical cells and polarizations, aqueous corrosion and protection of metals
    • Oxidation and high temperature corrosion-characterization and control; heat transfer-conduction, convection and heat transfer coefficient relations, radiation, mass transfer-diffusion and Fick's laws, mass transfer coefficients
    • Momentum transfer-concepts of viscosity, shell balances, Bernoulli's equation, friction factors

    Metallurgical engineering: Unit 02


    Extractive metallurgy
    • Minerals of economic importance, comminution techniques, size classification, flotation, gravity, and other methods of mineral processing; agglomeration, pyro-hydro and electro-metallurgical processes; material and energy balances
    • Principles and processes for the extraction of non-ferrous metals-aluminium, copper, zinc, lead, magnesium, nickel, titanium, and other rare metals; iron and steel making-principles, role structure and properties of slags, metallurgical coke
    • Iron and steel making-blast furnace, direct reduction processes, primary and secondary steel making, ladle metallurgy operations including deoxidation, desulphurization, sulphide shape control, inert gas rinsing and vacuum reactors
    • Secondary refining processes including AOD, VAD, VOD, VAR and ESR; ingot and continuous casting; stainless steel making, furnaces and refractories

    Metallurgical engineering: Unit 03


    Physical metallurgy
    • Crystal structure and bonding characteristics of metals, alloys, ceramics and polymers, structure of surfaces and interfaces, nano-crystalline and amorphous structures; solid solutions; solidification; phase transformation and binary phase diagrams
    • Principles of heat treatment of steels, cast iron and aluminum alloys; surface treatments; recovery, recrystallization and grain growth; industrially importance
    • Ferrous and non-ferrous alloys; elements of X-ray and electron diffraction; principles of scanning and transmission electron microscopy; industrial ceramics, polymers and composites
    • Electronic basis of thermal, optical, electrical and magnetic properties of materials; electronic and optoelectronic materials

    Metallurgical engineering: Unit 04


    Mechanical metallurgy
    • Elasticity, yield criteria, and plasticity; defects in crystals; elements of dislocation theory-types of dislocations, slip and twinning, source and multiplication of dislocations, stress fields around dislocations, partial dislocations
    • Elements of dislocation theory-dislocation interactions and reactions; strengthening mechanisms; tensile, fatigue and creep behaviour; super-plasticity; fracture-Griffith theory, basic concepts of linear elastic and elasto-plastic fracture mechanics
    • Fracture-ductile to brittle transition, fracture toughness; failure analysis; mechanical testing-tension, compression, torsion, hardness, impact, creep, fatigue, fracture toughness, and formability

    Metallurgical engineering: Unit 05


    Manufacturing processes
    • Metal casting-patterns and moulds including mould design involving feeding, gating and risering, melting, casting practices in sand casting, permanent mould casting, investment casting and shell moulding, casting defects and repair
    • Hot, warm, and cold working of metals, metal forming-fundamentals of metal forming processes of rolling, forging, extrusion, wire drawing and sheet metal forming, defects in forming; metal joining-soldering, brazing and welding
    • Common welding processes of shielded metal arc welding, gas metal arc welding, gas tungsten arc welding and submerged arc welding; welding metallurgy, problems associated with welding of steels and aluminium alloys, defects in welded joints
    • Powder metallurgy-productions of powder, compaction and sintering process.; NDT using dye-penetrant, ultrasonic, radiography, Eddy current, acoustic emission, and magnetic particle methods
    TS PGECET Nanotechnology Syllabus

    Nanotechnology: Unit 01


    Engineering mechanics and strength of material
    • Concurrent forces in a plane and its equilibrium
    • Centroids of composite plane figures
    • General case of forces in a plane
    • Moment of inertia of plane figures
    • Parallel axis theorem
    • Polar MI
    • Concept mass MI
    • Rectilinear translation
    • Kinematics
    • Principal of dynamics Motion of a particle under constant force
    • Force proportional to displacement and free vibrations (S.H.M.)
    • D’Alberts principle
    • Momentum
    • Impulse work and energy
    • Rotation of a rigid body about a fixed axis kinematics
    • Equation of motion of a rigid body about a fixed axis
    • Rotation under constant moment
    • Torsional vibration
    • Simple stresses and strains
    • Stresses on inclined plane
    • 2-dimensional stress systems
    • Principal stress and principal planes
    • Mohr’s circle
    • Shearing force and bending moment
    • Types of loads
    • Types of Supports
    • SF and BM diagrams
    • Bending stresses in beams with rectangular and circulars sections
    • Torsion of circular shafts
    • Determination of shear stress

    Nanotechnology: Unit 02


    Fluid mechanics and heat transfer
    • Classification of flows-steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational, irrotational flows, vorticity, and circulation-conservation of mass-equation of continuity, conservation of momentum-Euler’s equation
    • Conservation of energy-Bernoulli’s equation and its applications
    • One-dimensional viscous flow
    • Couette flow-plane couette flow
    • Two dimensional viscous flow; navier stokes equations and solutions
    • Laminar Boundary Layer
    • Momentum integral equation-flow over a flat plate-displacement thickness, momentum thickness and energy thickness
    • Turbulent Boundary Layer
    • Laminar-turbulent transition-momentum equations and Reynolds stresses
    • Dimensional Analysis and Modeling Similitude
    • Fundamental and derived dimensions-dimensionless groups, Buckingham theorem, Rayleigh method
    • Elements of heat transfer
    • Steady state conduction, convection and radiation
    • Furnaces
    • Heat utilization in furnaces, available heat, factors affecting it
    • Heat losses in furnaces and furnace efficiency
    • Heat balance and sankey diagrams
    • Principles of waste heat recovery
    • Recuperators and regenerators
    • Types and applicability
    • AMTD and LMTD in recuperators
    • Protective atmosphere and their applications salt bath furnaces

    Nanotechnology: Unit 03


    Elements of material science
    • Introduction, classification of materials, space lattice and unit cells, crystal systems
    • Indices for planes and directions
    • Structures of common metallic materials
    • Crystal defects: Point, linen, and surface defects
    • Dislocations, types, Burgers’ vector, dislocation movement by climb and cross slip
    • Dislocation sources, dislocation point-defect interaction and pileups
    • Plastic deformation of single crystals
    • Deformation by slip, CRSS for slip
    • Deformation of single crystal
    • Deformation by twinning
    • Stacking faults, hot working, cold working
    • Recovery, recrystallization, and grain growth
    • Hall-Petch equation
    • Tensile stress-strain diagrams, proof stress, yield stress, modulus of elasticity
    • Typical stress-strain diagrams for mild steel cast iron and aluminum alloy

    Nanotechnology: Unit 04


    Metallurgical thermodynamics
    • Introduction-basic concepts in thermodynamics
    • Objectives and limitations of classical thermodynamics
    • Zeroth law of thermodynamics
    • First law of thermodynamics-forms of energy, heat and work, Joules experiments, conservation of energy, concept of maximum work, isothermal expansion, reversible, adiabatic expansion, constant pressure processes, constant volume processes, enthalpy
    • Second law of thermodynamics-efficiency of cyclic process
    • Carnot cycle
    • Entropy
    • Thermodynamic equation of state
    • Statistical Entropy
    • Physical meaning of entropy, Boltzmann equation, mixing entropy, Stirling’s approximation auxiliary functions
    • Fundamental equations of state, Maxwell relationships, other thermodynamic relations, chemical potential, Gibbs-Helmholtz equation, criteria of equilibria
    • Third law of thermodynamics, heat capacity and entropy changes
    • Sensible heats, transformation heats, reaction heats, adiabatic flame temperatures, heat balances
    • Phase equilibria in one component systems, Clausius-clapeyron equation, heats of vaporization, shift in transformation, temperature with pressure, fugacity, activity, and equilibrium constant
    • Van't Hoff’s isotherm
    • Ellingham diagrams and application

    Nanotechnology: Unit 05


    Advanced material science
    • Electrical and electronic properties of materials, electronic conductivity, free electron theory and band theory of solids
    • Intrinsic semiconductors
    • Super conductivity
    • Magnetic properties, Dia, para, ferro, ferri magnetism
    • Soft and hard magnetic materials and applications
    • Optical properties of materials
    • Refractive index, absorption emission of light, optical fibers
    • Opto-electronic materials
    • Polymerization, cross linking glass transition, classification of polymers
    • Mechanical properties, dielectric behaviour of materials
    • Uses of polymers
    • Ceramics and glasses, crystalline, and non-crystalline ceramics
    • Major mechanical and optical properties
    • Composite materials
    • Classification
    • Matrices and reinforcements
    • Fabrication methods
    • Examples and applications
    • Nano materials: Importance, emergence of nanotechnology, bottom-up and top-down approaches, challenges in nanotechnology applications
    TS PGECET Pharmacy Syllabus

    Pharmacognosy and phytochemistry: Unit 01


    Sources of crude drugs of natural origin and their classification
    • Factors affecting the cultivation of medicinal and aromatic plants; plant growth regulators; adulteration and types of adulterants; methods of evaluation of crude drugs

    Pharmacognosy and phytochemistry: Unit 02


    Definition, classification, properties, general method of extraction, chemistry, tests for detection of following classes of phytoconstituents
    • Alkaloids, glycosides, terpenoids (volatile oils, resin, and resin combinations), tannins, carbohydrates, lipids, proteins, and enzymes
    • Pharmacognostic aspects of crude drugs containing aforesaid classes of phytoconstituents covering their biological source, diagnostic features, chemical constituents, tests for identification, uses, adulterants, substituents and allied drugs (if any)

    Pharmacognosy and phytochemistry: Unit 03


    Study of fibres used in pharmacy
    • Cotton, silk, wool, nylon, polyesters, glasswool, and asbestos

    Pharmacognosy and phytochemistry: Unit 04


    Plant tissue culture
    • Types of cultures, nutritional requirements, growth and their maintenance. Applications of plant tissue culture

    Pharmaceutical chemistry: Unit 01


    Biochemistry
    • Bimolecular vitamins and enzymes, metabolism of carbohydrates, proteins, lipids, and nucleic acids

    Pharmaceutical chemistry: Unit 02


    Medicinal chemistry
    • Introduction to drug design
    • Stereochemistry of drug molecules in relation to biological activity
    • Structure, nomenclature, classification, synthesis, SAR and metabolism of the following category of drugs, which are official in Indian pharmacopoeia and British pharmacopoeia: Hypnotics and sedatives, neuroleptics, antidepressants, anxiolytics
    • Structure, nomenclature, classification, synthesis, SAR and metabolism of the following category of drugs, which are official in Indian pharmacopoeia and British pharmacopoeia: Anticonvulsants, local anaesthetics; cardiovascular drugs: Antianginal agents
    • Cardiovascular drugs: Vasodilators, adrenergic and cholinergic drugs, cardiotonic agents, diuretics, antihypertensive drugs and antilipidemic agents
    • Antihistamines; analgesics; NSAIDS; hypoglycemic agents; anticoagulants; antiplatelet agents; chemotherapeutic agents-antibiotics, antibacterials, antifungal, antiviral, antimalarial, anticancer, and antiamoebic drugs; drugs affecting hormonal function

    Pharmaceutical chemistry: Unit 03


    Inorganic pharmaceuticals
    • Gastrointestinal agents; electrolytes; haematinics; topical agents; dental products. Limit tests for arsenic, iron, lead, chloride, and sulphate

    Pharmaceutics: Unit 01


    Physical pharmacy
    • Matter and properties of matter; micromeritics and powder rheology; surface and interfacial phenomenon; viscosity and rheology; dispersion systems; complexation; kinetics and drug stability

    Pharmaceutics: Unit 02


    Pharmaceutical microbiology and biotechnology
    • Methods of sterilization: Moist and dry heat, filtration, radiation and gaseous; sterility testing; media; sampling; neutralization of various antimicrobial substances in dosage forms, principles of microbiological assays
    • Principles of immunology-immunity; classification of immunity; natural and acquired immunity; manufacture and standardization of cholera, BCG, polio and rabies vaccines; diphtheria toxoid, tetanus antitoxin
    • Monoclonal antibodies-preparation and applications of antibiotics and hormones

    Pharmaceutics: Unit 03


    Pharmaceutical technology
    • Preformulation studies; pharmaceutical calculations; formulation, development, packaging and evaluation of: Liquid dosage forms, semisolid dosage forms, tablets, capsules, micro-encapsulation, aerosols, parenteral products, Ophthalmic preparations
    • Packaging and evaluation of: Suppositories, blood products and plasma substitutes and surgical products; cosmetic preparations: Skin, hair, nails, lips, eye, baby care products, and dentifrices

    Pharmaceutics: Unit 04


    Biopharmaceutics and pharmacokinetics
    • Passage of drugs across biological barrier; factors influencing absorption: biological, physico-chemical, physiological and pharmaceutical
    • Basic principles of pharmacokinetics; Compartment modeling: one compartment model with reference to intravascular and oral drug administration, concept of clearance
    • Non-linear pharmacokinetics with reference to one compartment model after I.V. drug administration; bioavailability and bioequivalence

    Pharmaceutics: Unit 05


    Pharmacology
    • General pharmacological principles including toxicology; pharmacology of drugs acting on central nervous system, cardiovascular system (including diuretics), autonomic nervous system, gastrointestinal system and respiratory system
    • Pharmacology of autacoids-histamine, antihistaminic drugs
    • 5-HT-its agonists and antagonists, prostaglandins, thromboxanes, and leukotrienes. steroidal and nonsteroidal anti-inflammatory drugs
    • Pharmacology of drugs acting on endocrine system: Thyroid hormones and antithyroid drugs, insulin, oral hypoglycemics, estrogens, progesterone and oral contraceptives, androgens and anabolic steroids
    • Chemotherapeutic agents; bioassays; immunopharmacology: Drugs acting on the blood and blood forming organs

    Pharmaceutics: Unit 06


    Clinical pharmacy
    • Therapeutic drug monitoring, dosage regimen in renal and hepatic impairment
    • Drug-drug interactions and drug-food interactions, adverse drug reactions
    • Medication history and review, and patient counseling

    Pharmaceutics: Unit 07


    Pathophysiology of common diseases
    • Parkinsonism
    • Schizophrenia
    • Depression, stroke (ischemic and hemorrhage)
    • Hypertension
    • Angina
    • Myocardial infarction, CCF
    • Atherosclerosis, diabetes mellitus, peptic ulcer, and inflammatory bowel disease
    • Cirrhosis and alcoholic liver diseases, acute and chronic renal failure
    • Asthma and chronic obstructive airway diseases

    Pharmaceutics: Unit 08


    Pharmaceutical analysis and quality assurance
    • Concepts of qualitative and quantitative analysis
    • Fundamentals of volumetric analysis: Methods of expressing concentration, primary, and secondary standards, standardization. Acid-base, oxidation-reduction, precipitation, non-aqueous and complexometric titrations and gravimetric analysis
    • Fundamentals of volumetric analysis: Methods of moisture determination; concept of error, precision, accuracy, specificity, sensitivity, detection limit, linearity and range. Ruggedness; calibration of analytical equipment
    • Principles, instrumental analysis and applications of the following: Absorption spectroscopy (UV, visible, and IR), fluorimetry, flame photometry, refractometry, polarimetry, potentiometry, conductometry, and polarography
    • Principles, instrumental analysis and applications of the following: Chromatographic methods; paper, TLC, column, GC and HPLC and electrophoresis. RIA, ELISA, and pharmacopoeial assays
    • Quality assurance and quality control methods
    • Concept of GMP,GLP, and GCP

    Pharmaceutics: Unit 09


    Forensic pharmacy
    • Pharmacy act 1948; drugs and cosmetics act 1940 and rules 1945 and amendments thereto; narcotic drugs and psychotropic substances act 1985 and rules; drugs price control order
    TS PGECET Mining Engineering Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants; systems of linear equations; Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Limit, continuity, and differentiability; partial derivatives; maxima and minima; sequences and series; test for convergence; Fourier series

    Engineering mathematics: Unit 03


    Vector calculus
    • Gradient; divergence and curl; line; surface and volume integrals; Stokes, Gauss, and Green’s theorems

    Engineering mathematics: Unit 04


    Differential equations
    • Linear and non-linear first order ODEs; higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations

    Engineering mathematics: Unit 05


    Probability and Statistics
    • Measures of central tendency; random variables; Poisson, normal, and binomial distributions; correlation and regression analysis

    Engineering mathematics: Unit 06


    Numerical methods
    • Solutions of linear algebraic equations; integration of trapezoidal and Simpson’s rule; single and multi-step methods for differential equations

    Mine development and surveying: Unit 01


    Mine development
    • Methods of access to deposits; underground drivages; drilling methods and machines; explosives, blasting devices, and practices

    Mine development and surveying: Unit 02


    Mine surveying
    • Levels and leveling, theodolite, tacheometry, triangulation; contouring; errors and adjustments; correlation; underground surveying; curves; photogrammetry; field astronomy; EDM and total station; introductory GPS

    Geomechanics and ground control: Unit 01


    Engineering mechanics
    • Equivalent force systems; equations of equilibrium; two dimensional frames and trusses; free body diagrams; friction forces; particle kinematics and dynamics; beam analysis

    Geomechanics and ground control: Unit 02


    Geomechanics
    • Geotechnical properties of rocks; rock mass classification; instrumentation and stress measurement techniques; theories of rock failure; ground vibrations; stress distribution around mine openings; subsidence; rock bursts and coal bumps; slope stability

    Geomechanics and ground control: Unit 03


    Ground control
    • Design of pillars; roof supporting systems; mine filling

    Mining methods and machinery: Unit 01


    Mining methods
    • Surface mining: Layout, development, loading, transportation and mechanization, continuous surface mining systems; underground coal mining: Bord and pillar systems, room and pillar mining, longwall mining, thick seam mining methods; highwall mining
    • Underground metal mining: open, supported and caved stoping methods, stope mechanization, ore handling systems

    Mining methods and machinery: Unit 02


    Mining machinery
    • Generation and transmission of mechanical, hydraulic and pneumatic power; materials handling: Haulages, conveyors, face and development machinery, hoisting systems, pumps, crushers

    Surface environment, mine ventilation, and underground hazards: Unit 01


    Surface environment
    • Air, water, and soil pollution: Standards of quality, causes and dispersion of contamination, and control; noise; land reclamation

    Surface environment, mine ventilation, and underground hazards: Unit 02


    Mine ventilation
    • Underground atmosphere; heat load sources and thermal environment, air cooling; mechanics of airflow, distribution, natural and mechanical ventilation; mine fans and their usage; auxiliary ventilation; ventilation planning; ventilation networks

    Surface environment, mine ventilation, and underground hazards: Unit 03


    Subsurface hazards
    • Mine gases
    • Underground hazards from fires, explosions, dust and inundation; rescue apparatus and practices; safety in mines; accident data analysis; mine lighting; mine legislation; occupational safety

    Mine economics, mine planning, systems engineering: Unit 01


    Mine economics
    • Mineral resource classification; discounted cash flow analysis; mine valuation; mine investment analysis; mineral taxation

    Mine economics, mine planning, systems engineering: Unit 02


    Mine planning
    • Sampling methods, practices and interpretation; reserve estimation techniques: Basics of geostatistics and quality control; optimization of facility location; work-study

    Mine economics, mine planning, systems engineering: Unit 03


    Systems engineering
    • Concepts of reliability; reliability of simple systems; maintainability and availability; linear programming, transportation and assignment problems; network analysis; inventory models; queueing theory; basics of simulation
    TS PGECET Textile Technology Syllabus

    Engineering mathematics: Unit 01


    Linear algebra
    • Matrices and determinants, systems of linear equations, Eigenvalues and Eigenvectors

    Engineering mathematics: Unit 02


    Calculus
    • Limit continuity and differentiability; partial derivatives; maxima and minima; sequences and series; test for convergence; Fourier series
    • Vector calculus: gradient; divergence and curl; line a; surface and volume integrals, Stokes, Gauss, and Green’s theorems

    Engineering mathematics: Unit 03


    Differential equations
    • Linear and non-linear first order ODE’s; higher order linear ODE’s with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs-Laplace, heat, and wave equations

    Engineering mathematics: Unit 04


    Probability and Statistics
    • Mean, median, mode and standard deviation; Ransom variable; Poisson, normal, and binomial distributions; correlation and regression analysis

    Engineering mathematics: Unit 05


    Numerical methods
    • Solutions of linear and non-linear algebraic equations; integration of trapezoidal and Simpson’s rule; single and multi-step methods for differential equations

    General textile technology: Unit 01


    Textile fibres
    • Classification of textile fibres, fibre properties, new fibres, substrate and geometry, spinning of man made fibres and terms related, spinnerets, properties of cotton, wool, silk and bast fibres
    • Comparison of natural and man-made fibres for production and properties, spin finish, types of silk yarns, types of silk fabrics, types of yarn (single, multi fold, and fancy)

    General textile technology: Unit 02


    Silk technology
    • Types of silks, production of silk from mulberry, rearing, reeling, throwing process, elements of quality in silk

    General textile technology: Unit 03


    Yarn count systems
    • Yarn numbering systems, differences, conversion from one system to other

    General textile technology: Unit 04


    New and unconventional natural fibres
    • Organic, Bt, PALF, bamboo, maize, applications

    General textile technology: Unit 05


    Textile testing
    • Objectives, number of sample and sample preparation methods, testing of fibres, yarns and fabrics for properties, interpretation of results using statistics, role of SHF, KESF, FAST, AFIS systems

    Yarn manufacture: Unit 01


    Blow room
    • Cotton selection, mixing and blending, selection of openers and cleaners, parameters controlling quality, modern developments in openers and blow room

    Yarn manufacture: Unit 02


    Carding drawing
    • Objectives, elements, role played, setting, modern developments in card and, drawframe, quality control aspects

    Yarn manufacture: Unit 03


    Comber and simplex
    • Preparatory process to combing, selection of machines, quality control at comber; simplex objectives, elements, role played, setting, modern developments, and quality control

    Yarn manufacture: Unit 04


    Ring frame and post spinning
    • Objectives, elements, role played, setting, modern developments and quality control in ring spinning; post spinning machines, selection

    Yarn manufacture: Unit 05


    Spin plan
    • Preparation of spin plan for cotton, blends, and synthetics

    Yarn manufacture: Unit 06


    Advanced yarn manufacture
    • Principles of open end spinning, selection criterion, elements and working of rotor, DREF, and air jet spinning

    Yarn manufacture: Unit 07


    Texturing
    • Principles and methods of texturing, application

    Fabric manufacture: Unit 01


    Winding
    • Types of spinning packages, principles of winding, selection criterion, systems of yarn preparation, practical aspects, kinetics of winding, productivity of winding, quality control aspects and production planning

    Fabric manufacture: Unit 02


    Warping
    • Types of warping, selection criterion, practical aspects, practical aspects of sectional warping, productivity, quality control aspects, and production planning

    Fabric manufacture: Unit 03


    Sizing
    • Different methods of types of sizing, elements of sizing machine, size preparation and devices, size ingredients and selection, calculation of concentration of size recipe, quality control aspects, role of each zone, productivity of winding
    • Quality control aspects, and production planning

    Fabric manufacture: Unit 04


    Post sizing
    • Selection of heald, reed and drop wire, and their selection

    Fabric manufacture: Unit 05


    Loom shed
    • Weave preparatory plan, introduction to weaving, loom specification and loom (shuttle) classification and elements and mechanisms, quality control and production aspects, loom primary and secondary motions, shedding devices and sheds, automatic weaving
    • Dobby and Jacquard shedding, box motions, practical problems, timing of looms, setting of looms for different types of fibres and sorts

    Fabric manufacture: Unit 06


    Unconventional weaving
    • Principles, selection criterion, working elements of gripper projectile, rapier, airjet and waterjet weaving, multiphase weaving, triaxial weaving

    Fabric structure, knitting, nonwovens, and textile wet processing: Unit 01


    Fabric structure
    • Elements of fabric structure, representation, primary, secondary and special weaves, compound structures and their features

    Fabric structure, knitting, nonwovens, and textile wet processing: Unit 02


    Knitting
    • Principles of loop formation in latch, beard and compound needle in weft knitting, machine arrangement for rib, purl and interlock, methods of representation of knit structure, geometry of knits, elements of warp knitting, machine aspects
    • Loop formation in latch, beard and compound needle, type of warp knit structure, calculations in weft and warp knitting

    Fabric structure, knitting, nonwovens, and textile wet processing: Unit 03


    Nonwoven fabrics
    • Differences between woven, knitted and nonwoven, methods of nonwoven, selection, production of needle punched nonwoven, properties, and applications

    Fabric structure, knitting, nonwovens, and textile wet processing: Unit 04


    Textile wet processing
    • Grey cloth inspection, method of water calculation, elements, process and parameters of singeing, desizing, scouring, bleaching, mercerizing and quality control aspects, dyeing and elements of dyeing, dyes and classification, dyeing methods
    • Faults of dyeing, printing and its elements, methods of printing, print paste preparation and elements of print paste, role played by each element, printing machines, selection of printing methods; finishing elements and methods
    • Types of finishes and machines used

    Apparel technology: Unit 01


    Sourcing
    • Need, scope, role played by sourcing manager

    Apparel technology: Unit 02


    Markers and marker planning
    • Need and scope of markers, types, marker making methods (manual and automated), constraints on fabric width, checks and stripes, constraints on grain direction

    Apparel technology: Unit 03


    Spreading
    • Need, objectives, requirements and methods of spreading, economic cut quantities, factors affecting economic cut quantities, computerized cut order planning

    Apparel technology: Unit 04


    Cutting
    • Objectives, methods of cutting, types of cutting machines and applications, study on computer controlled cutting machine, role of CNC machines in cutting, laser, water jet and plasma cutting
    • Stickering, bundling, dispatch

    Apparel technology: Unit 05


    Sewing technology
    • Introduction to sewing machines, types, sewing machine-components and functions of sewing machine
    • Embroidery machines-mechanism, stitch formation, computer controlled embroidery sewing machine
    • Selection of stitches and stitching mechanism: Classification, comparison of stitches, and Its usage
    • Seams: Definition, types of seams, seam finishes

    Apparel technology: Unit 06


    Sewing threads
    • Types, selection of sewing threads, sewing problems
    • Sewing thread consumption, work aids, care labelling

    Apparel technology: Unit 07


    Fusing technology
    • Need, methods, requirement of fusing process, fusing machinery
    • Quality control in fusing
    • Pressing of garment and equipment

    Apparel technology: Unit 08


    Washing
    • Types, principles of laundering, different methods of washing, characteristics of washing machine

    Aerospace Engineering

    To practise on the TS PGECET Mock Test for Aerospace Engineering click here

    Architecture and Planning

    The TS PGECET mock test for Architecture and Planning has not been announced yet and will be updated here after it is announced by the University

    Biomedical Engineering

    To practise on the TS PGECET Biomedical Engineering paper click here

    Biotechnology

    To use the TS PGECET Biotechnology Mock test click here

    Chemical Engineering

    Click here to practise with TS PGECET mock test for Chemical Engineering.

    Civil Engineering

    Click here to start the TS PGECET Civil Engineering mock test

    Computer Science and Information Technology

    To practise with the TS PGECET  Computer Science and Information Technology Mock Test Click here

    Electrical Engineering

    Click here to practise with the TS PGECET Mock Test for Electrical Engineering

    Electronics and Communication Engineering

    To use the mock test for TS PGECET Electronics and Communication Engineering click here

    Environmental Management

    To use the TS PGECET Mock Test for Environmental Management by click here

    Food Technology

    To practise with TS PGECET Mock Test for Food Technology click here

    Geoengineering and Geoinformatics

    Click here to practise with TS PGECET Geo-Engineering & Geo-Informatics Mock Test

    Instrumentation Engineering

    To practise with TS PGECET  Instrumentation Engineering Mock Test click here

    Mechanical Engineering

    Click here to use the Mock Test for TS PGECET Mechanical Engineering

    Metallurgical Engineering

    Click here to practise with TS PGECET  Metallurgical Engineering Mock test

    Nanotechnology

    To practise with TS PGECET  Nano Technology Mock Test click here

    Pharmacy

    Click here to practise with the TS PGECET  Pharmacy Mock Test

    JNTUH will announce the release date for the hall ticket of TS PGECET 2025 on its official website. Candidates have to download their TS PGECET hall ticket 2025 from the candidate portal by logging in with the help of their registration number, date of birth, and selecting the stream they have applied for. Candidates must check the details provided on the TS PGECET 2025 hall ticket and should contact the admission authority in case of any discrepancy. 

    TS PGECET 2025 Hall Ticket Download Steps

    Candidates can refer to the following steps to download the hall ticket of TS PGECET 2025 -

    • Visit the TS PGECET official website- pgecet.tsche.ac.in.

    • Click on the “Download TS PGECET Hall Ticket ” link.

    • Enter the registration number, date of birth and exam paper appearing for.

    • Click on the “Submit’ button

    • TS PGECET hall ticket 2025 will be displayed on the screens.

    • Download the hall ticket of TS PGECET 2025 and take a printout.

    TS PGECET hall ticket 2025: Details mentioned

    • Name of the candidate

    • Category

    • Date of birth

    • Roll number

    • Photograph and signature of candidate

    • Father's name

    • Date and time of TS PGECET 2025 exam

    • Venue of TS PGECET exam centre

    • Exam day guidelines

    Aerospace Engineering

    TS PGECET  Answer Key for Aerospace Engineering 

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Architecture and Planning

    TS PGECET  Answer Key for Architecture and Planning 

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Biomedical Engineering

    TS PGECET  Answer Key for Biomedical Engineering 

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Biotechnology

    TS PGECET  Answer Key for Biotechnology

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Chemical Engineering

    TS PGECET  Answer Key for Chemical Engineering 

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Civil Engineering

    TS PGECET  Answer Key for Civil Engineering 

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here


    Computer Science and Information Technology

    TS PGECET  Answer Key for Computer Science and Information Technology

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Electrical Engineering

    TS PGECET  Answer Key for Computer Science and Information Technology

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Electronics and Communication Engineering

    TS PGECET  Answer Key for Electronics and Communication Engineering

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Environmental Management

    TS PGECET  Answer Key for Environmental Management

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Food Technology

    TS PGECET  Answer Key for Food Technology

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Geoengineering and Geoinformatics

    TS PGECET  Answer Key for Geo-Engineering & Geo-Informatics

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Instrumentation Engineering

    TS PGECET  Answer Key for Instrumentation Engineering

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Mechanical Engineering

    TS PGECET  Answer Key for Mechanical Engineering

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Metallurgical Engineering

    TS PGECET  Answer Key for Metallurgical Engineering

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Nanotechnology

    TS PGECET  Answer Key for Nano Technology

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    Pharmacy

    TS PGECET  Answer Key for Pharmacy

    Year
    Question Paper
    Answer Key
    2019
    Coming soon
    Coming soon
    2018
    click here
    click here

    JNTUH will declare the result of TS PGECET 2025 on its official website in online mode. Candidates can download their TS PGECET result  2025 from the candidate portal by logging in with the help of their registration number, date of birth, and selecting the stream they have applied for. Candidates are advised by the authorities to check the details provided on the TS PGECET 2025 result and should contact the admission authority in case of any discrepancy. 

    TS PGECET 2025 Result Download Steps

    Candidates can refer to the following steps to download the hall ticket of TS PGECET 2025 -

    • Visit the TS PGECET official website- pgecet.tsche.ac.in.

    • Click on the “Download TS PGECET Result” link.

    • Enter the registration number, date of birth and exam paper appearing for.

    • Click on the "Submit" button

    • TS PGECET result 2025 will be displayed on the screens.

    • Download the result of TS PGECET 2025 and take a printout.

    TS PGECET Result 2025: Details mentioned

    • Name of the candidate

    • Category

    • Date of birth

    • Roll number

    • Photograph and signature of the candidates

    • Father's name

    • Subjectwise scores

    The authorities will release the cutoff of TS PGECET 2025 on the official website. The TS PGECET cutoff is the minimum score that the candidates will be required by the aspirants to attain if they wish to take admissions in M.Tech degree programmes in the participating institutes. The authorities consider several factors such as the availability of seats, difficulty level of exam, number of candidates applying for the exam before preparing the TS PGECET 2025 cutoff. Candidates who will get marks above the cutoff will have a higher chance of getting admissions in the participating institutes of TS PGECET 2025.

    The authority will announce the schedule for the TS PGECET 2025 on the official website. Candidates have to fill their choices and college in order of preference during the TS PGECET 2025 counselling. The authorities will announce the TS PGECET 2025 seat allotment on the basis of ranks secured and merit list. Candidates who will be allotted seats under TS PGECET seat allotment 2025 will have to visit the allotted institutes to complete the document verification and payment of the admission fee.

     TS PGECET counselling process

    Documents Required at TS PGECET 2025 counselling

    Telangana State Post Graduate Engineering Common Entrance Test 2025

    • GATE score card if applying on basis of GATE scores
    • TS PGECET 2025 hall ticket
    • TS PGECET 2025 rank card
    • Transfer certificate
    • Class 10th mark sheet/certificates
    • Class 12th mark sheet/certificates
    • Degree certificate & memorandum of marks of qualifying exam
    • Residence certificate for preceding 7 years of the qualifying examination for candidates who have completed their graduation through private study without any institutionalized education
    • Residence certificate of father or mother for a period of 10 years in Telangana/A.P. excluding the period of their employment outside Telangana/A.P. from M.R.O. in case of candidates who studied outside the state of Telangana/AP
    • Integrated community certificate issued by the competent authority in case of BC/SC/ST candidates
    • Income certificate issued after Jan 1, 2025
    • Minorities – degree TC containing minority status
    • Residence certificate from MRO for a period of 10 years of either parent for non-locals
    • Aadhaar card
    • Income certificate issued by MRO after 01-01-2025 will only be considered

    General Information

    Contacts

    04027097124 , 919502721173

    Relevant Links

    Official Website Link Click Here
    Symbiosis Online Programs

    Online PG programs from Symbiosis Centre for Distance Learning

    Jain Online Degree Programs

    Apply for Online Degree Programs from Jain Online

    Frequently Asked Questions

    1. What are the TS PGECET 2025 counselling dates for phase 2 registration?

    The TS PGECET 2025 phase 2 counselling registration dates will be announced online.

    2. When will the result of the TS PGECET be declared?

    TS PGECET result 2025 release date will be announced on the official website.

    3. How can I download the TS PGECET hall ticket 2025?

    Candidates can download the TS PGECET hall ticket 2025 at pgecet.tsche.ac.in using their registration number, date of birth and exam paper for entrance test.

    4. When will the TS PGECET hall ticket 2025 be released?

    TS PGECET 2025 hall ticket release date will be announced on the official website. 

    5. What is the TS PGECET 2025 exam date?

    The TS PGECET 2025 exam date is from June 16 to 19, 2025.

    6. When will the TS PGECET application form 2025 be released?

    TS PGECET 2025 application form is expected to be released in March, 2025.

    Colleges Accepting TS PGECET

    Questions related to TS PGECET

    Have a question related to TS PGECET ?

    With a GPAT rank of 2157, securing a seat in JNTUH M.Pharm Pharmacology might be challenging, especially for the general category. However, your TS PGECET rank of 79 can be advantageous if you belong to a reserved category.

    To make an informed decision:

    1. Check Cutoffs: Look at previous year cutoffs for both GPAT and TS PGECET for JNTUH M.Pharm Pharmacology.
    2. Consider Reservations: If you belong to a reserved category, your TS PGECET rank can significantly improve your chances.
    3. Explore Other Options: If the chances seem low, consider other colleges or specializations within pharmacy.

    Ultimately, participating in both counseling processes (GPAT and TS PGECET) would be advisable to explore all possibilities.

    Remember, cutoff ranks can fluctuate yearly, so stay updated with the latest information.

    hope this helps you!!

    Hi there,

    Hope you are doing well.

    The income certificate is generally required in the TS PGECET counselling for the students which are availing and want to avail any kind of financial assistance or scholarship in the future. For open category students it is generally not required to produce an income certificate to take admission in a certain college until you want to avail any kind of financial assistance later in the future.

    You can further check about the details and the documents required by visiting the official website of the ts pgecet examination authority.

    Hope this resolves your query.

    Hey there,

    Congrats on getting the 2248 rank in  ts pgecet examination.

    You can get admission in many colleges at  this rank in your preferred field that is pharmacy.

    You can check the previous year cutoffs and the opening and closing ranks by visiting the official website of the concerned authority. From there you can get an idea about the colleges in which you can get admission at this rank.

    The link of the official website is mentioned below from where you can check the previous year cutoffs and many other things.

    https://pgecet.tsche.ac.in/PGECET_HomePage.aspx

    You can also check our official website for the further information regarding counselling and seat allotment. The link of our site is mentioned below:

    https://engineering.careers360.com/articles/ts-pgecet-counselling

    Hope this resolves your query.

    Hi there,

    Congratulations on securing 1725 rank in the ts pgecet examination.

    To know about the colleges in which you can get the admission at this rank, you can visit the official website of the ts pgecet examination authority and then checking the previous year cutoffs and opening and closing ranks to get an idea about the colleges which are possible at your rank.

    You can also take the help from our official college predictor to get an idea about the colleges which are possible at your rank. It is officially designed by our experts. The link of the predictor is mentioned below:

    https://engineering.careers360.com/exams/ts-pgecet

    Hope this resolves your query.


    Hi there,

    Hope you are doing fine.

    With 61 marks in TS PGECET, predicting your exact rank can be challenging without the precise ranking formula and considering the overall competition and number of candidates. However, based on previous year  data and general trends  a score of 61 often places you in a competitive position likely within the top 5000 to 10000 ranks  but this can vary.

    For Mechanical Engineering, this rank might still provide opportunities for admission into various government and private engineering colleges in Telangana. Many institutions offer specializations and courses related to mechanical engineering, including those in emerging fields and advanced studies.

    To get specific details regarding it, you can visit the official website of the ts pgecet and then check the required details.

    Hope this resolves your query.

    View All
    Back to top