IIIT Srirangam, Tiruchirappalli Seat Matrix 2024 (Released) - Check Previous Year Matrix Here

Modulus Function, Properties of Modulus Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 37 Questions around this concept.

Solve by difficulty

Let $\mathrm{A}=\{\mathrm{x} \in \mathbb{R}:|\mathrm{x}+1|<2\}_{\text {and }} \mathrm{B}=\{\mathrm{x} \in \mathbb{R}:|\mathrm{x}-1| \geq 2\}$. Then which one of the following statements is NOT true?

If $|x-3|=5$, then $x=$

If solution of $|x+9|>-3$ is the set A and the solution of $|x+9|<-3$ is the set $B$ then set $A$ and set $B$ are

Which of the following statement is always true?

Which of the statements is true?

The graph of $y=3|x-2|$ is

Let $A=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geq 3\}$ and $B=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$.

If $C=\{(x, y) \in \mathbf{A} \cap \mathbf{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in C}|x+y|$ is :

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 28th April

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

Concepts Covered - 1

Modulus Function, Properties of Modulus Function

Modulus Function:

The function f: R\small \rightarrowR defined by f(x) = |x| for each x \small \in R is called the modulus function.

For each non-negative value of x, f(x) is equal to x. But for negative values of x, the value of f(x) is the negative of the value of x

$|\mathrm{x}|, \quad \mathrm{x} \in \mathbb{R}=\left\{\begin{array}{cc}x, & x \geq 0 \\ -x, & x<0\end{array}\right.$

Range $\in[0, \infty)$

Modulus Equations: Properties

If $a>0$
1. $|x|=a$, then $x=a,-a$
2. $|x|=|-x|$
3. $|x|^2=x^2$
4. If $|\mathrm{x}|=\mathrm{x}$, then $\mathrm{x}>0$ or $\mathrm{x}=0$
5. If $|x|=-x$, then $x<0$ or $x=0$
6. $|f(x)|=|g(x)|$, then $f(x)=g(x)$ or $f(x)=-g(x)$

Modulus inequalities

These deal with the inequalities (<, >, ≤, ≥ ) on expressions with absolute value sign. 

Properties

If a, b > 0, then

1.
$
\begin{aligned}
& |x| \leq a \Rightarrow x^2 \leq a^2 \\
& \Rightarrow-a \leq x \leq a
\end{aligned}
$
2.
$
\begin{aligned}
& |x| \geq a \Rightarrow x^2 \geq a^2 \\
& \Rightarrow x \leq-a \text { or } x \geq a
\end{aligned}
$
3.
$
\begin{aligned}
& a \leq|x| \leq b \Rightarrow a^2 \leq x^2 \leq b^2 \\
& \Rightarrow x \in[-b,-a] \cup[a, b]
\end{aligned}
$
4. $|x+y|=|x|+|y| \Leftrightarrow x y \geq 0$.
5. $|x-y|=|x|-|y| \Rightarrow x \cdot y \geq 0$ and $|x| \geq|y|$
6. $|x \pm y| \leq|x|+|y|$
7. $|x \pm y| \geq||x|-|y||$

Study it with Videos

Modulus Function, Properties of Modulus Function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top