UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 28th April
37 Questions around this concept.
Let $\mathrm{A}=\{\mathrm{x} \in \mathbb{R}:|\mathrm{x}+1|<2\}_{\text {and }} \mathrm{B}=\{\mathrm{x} \in \mathbb{R}:|\mathrm{x}-1| \geq 2\}$. Then which one of the following statements is NOT true?
If $|x-3|=5$, then $x=$
If solution of $|x+9|>-3$ is the set A and the solution of $|x+9|<-3$ is the set $B$ then set $A$ and set $B$ are
JEE Main 2025: Session 2 Result Out; Direct Link
JEE Main 2025: College Predictor | Marks vs Percentile vs Rank
New: JEE Seat Matrix- IITs, NITs, IIITs and GFTI | NITs Cutoff
Latest: Meet B.Tech expert in your city to shortlist colleges
Which of the following statement is always true?
Which of the statements is true?
The graph of $y=3|x-2|$ is
Let $A=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geq 3\}$ and $B=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$.
If $C=\{(x, y) \in \mathbf{A} \cap \mathbf{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in C}|x+y|$ is :
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 28th April
Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more
Modulus Function:
The function f: RR defined by f(x) = |x| for each x
R is called the modulus function.
For each non-negative value of x, f(x) is equal to x. But for negative values of x, the value of f(x) is the negative of the value of x
$|\mathrm{x}|, \quad \mathrm{x} \in \mathbb{R}=\left\{\begin{array}{cc}x, & x \geq 0 \\ -x, & x<0\end{array}\right.$
Range $\in[0, \infty)$
Modulus Equations: Properties
If $a>0$
1. $|x|=a$, then $x=a,-a$
2. $|x|=|-x|$
3. $|x|^2=x^2$
4. If $|\mathrm{x}|=\mathrm{x}$, then $\mathrm{x}>0$ or $\mathrm{x}=0$
5. If $|x|=-x$, then $x<0$ or $x=0$
6. $|f(x)|=|g(x)|$, then $f(x)=g(x)$ or $f(x)=-g(x)$
Modulus inequalities
These deal with the inequalities (<, >, ≤, ≥ ) on expressions with absolute value sign.
Properties
If a, b > 0, then
1.
$
\begin{aligned}
& |x| \leq a \Rightarrow x^2 \leq a^2 \\
& \Rightarrow-a \leq x \leq a
\end{aligned}
$
2.
$
\begin{aligned}
& |x| \geq a \Rightarrow x^2 \geq a^2 \\
& \Rightarrow x \leq-a \text { or } x \geq a
\end{aligned}
$
3.
$
\begin{aligned}
& a \leq|x| \leq b \Rightarrow a^2 \leq x^2 \leq b^2 \\
& \Rightarrow x \in[-b,-a] \cup[a, b]
\end{aligned}
$
4. $|x+y|=|x|+|y| \Leftrightarrow x y \geq 0$.
5. $|x-y|=|x|-|y| \Rightarrow x \cdot y \geq 0$ and $|x| \geq|y|$
6. $|x \pm y| \leq|x|+|y|$
7. $|x \pm y| \geq||x|-|y||$
"Stay in the loop. Receive exam news, study resources, and expert advice!"