JEE Main Participating Institutes 2026 - Check the List of Top Colleges Here

Modulus Function, Properties of Modulus Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 38 Questions around this concept.

Solve by difficulty

Let $\mathrm{A}=\{\mathrm{x} \in \mathbb{R}:|\mathrm{x}+1|<2\}_{\text {and }} \mathrm{B}=\{\mathrm{x} \in \mathbb{R}:|\mathrm{x}-1| \geq 2\}$. Then which one of the following statements is NOT true?

If $|x-3|=5$, then $x=$

If solution of $|x+9|>-3$ is the set A and the solution of $|x+9|<-3$ is the set $B$ then set $A$ and set $B$ are

Which of the following statement is always true?

Which of the statements is true?

The graph of $y=3|x-2|$ is

Let $A=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geq 3\}$ and $B=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$.

If $C=\{(x, y) \in \mathbf{A} \cap \mathbf{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in C}|x+y|$ is :

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 31st August | Admissions Closing Soon

Concepts Covered - 1

Modulus Function, Properties of Modulus Function

Modulus Function:

The function f: R\small \rightarrowR defined by f(x) = |x| for each x \small \in R is called the modulus function.

For each non-negative value of x, f(x) is equal to x. But for negative values of x, the value of f(x) is the negative of the value of x

$|\mathrm{x}|, \quad \mathrm{x} \in \mathbb{R}=\left\{\begin{array}{cc}x, & x \geq 0 \\ -x, & x<0\end{array}\right.$

Range $\in[0, \infty)$

Modulus Equations: Properties

If $a>0$
1. $|x|=a$, then $x=a,-a$
2. $|x|=|-x|$
3. $|x|^2=x^2$
4. If $|\mathrm{x}|=\mathrm{x}$, then $\mathrm{x}>0$ or $\mathrm{x}=0$
5. If $|x|=-x$, then $x<0$ or $x=0$
6. $|f(x)|=|g(x)|$, then $f(x)=g(x)$ or $f(x)=-g(x)$

Modulus inequalities

These deal with the inequalities (<, >, ≤, ≥ ) on expressions with absolute value sign. 

Properties

If a, b > 0, then

1.
$
\begin{aligned}
& |x| \leq a \Rightarrow x^2 \leq a^2 \\
& \Rightarrow-a \leq x \leq a
\end{aligned}
$
2.
$
\begin{aligned}
& |x| \geq a \Rightarrow x^2 \geq a^2 \\
& \Rightarrow x \leq-a \text { or } x \geq a
\end{aligned}
$
3.
$
\begin{aligned}
& a \leq|x| \leq b \Rightarrow a^2 \leq x^2 \leq b^2 \\
& \Rightarrow x \in[-b,-a] \cup[a, b]
\end{aligned}
$
4. $|x+y|=|x|+|y| \Leftrightarrow x y \geq 0$.
5. $|x-y|=|x|-|y| \Rightarrow x \cdot y \geq 0$ and $|x| \geq|y|$
6. $|x \pm y| \leq|x|+|y|$
7. $|x \pm y| \geq||x|-|y||$

Study it with Videos

Modulus Function, Properties of Modulus Function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions