JEE Main Eligibility Marks in 12th Subject Wise 2025 – Check Minimum Marks Criteria

Trigonometric Function - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 6 Questions around this concept.

Solve by difficulty

Let $f_k(x)=\frac{1}{k}\left(\sin ^k x+\cos ^k x\right)$ where $x \in R$ and $k \geqslant 1$. Then $f_4(x)-f_6(x)$ equals:

What is the range of $x$ for $\sin 2 x>|\cos x|$ where $x \epsilon\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Concepts Covered - 1

Trigonometric Function

Sine Function 

$y=f(x)=\sin (x)$

Domain is R

Range is $[-1,1]$

Cosine Function

$y=f(x)=\cos (x)$

Domain is R 

Range is $[-1, 1]$

Tangent Function

$y=f(x)=\tan (x)$

 

 

Domain is $\mathbb{R}-\left\{\frac{(2 \mathrm{n}+1) \pi}{2}, \mathrm{n} \in \mathbb{I}\right\}$

Range is R

Cosecant Function

$y=f(x)=\operatorname{cosec}(x)$

 

Domain is $\mathrm{R}-\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$ (Integers) $\}$
Range is $\mathrm{R}-(1,1)$

Secant Function

$y=f(x)=\sec (x)$

Domain is $\mathbb{R}-\left\{\frac{(2 \mathrm{n}+1) \pi}{2}, \mathrm{n} \in \mathbb{I}\right\}$

Range is R - (-1, 1)

Cotangent Function

$y=f(x)=\cot (x)$

 

Domain is R - $\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$ (Integers) $\}$
Range is R

Study it with Videos

Trigonometric Function

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top