Amity University, Mumbai B.Tech Admissions 2025
ApplyRanked amongst top 3% universities globally (QS Rankings)
6 Questions around this concept.
Let $f_k(x)=\frac{1}{k}\left(\sin ^k x+\cos ^k x\right)$ where $x \in R$ and $k \geqslant 1$. Then $f_4(x)-f_6(x)$ equals:
What is the range of $x$ for $\sin 2 x>|\cos x|$ where $x \epsilon\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Sine Function
$y=f(x)=\sin (x)$
Domain is R
Range is $[-1,1]$
Cosine Function
$y=f(x)=\cos (x)$
Domain is R
Range is $[-1, 1]$
Tangent Function
$y=f(x)=\tan (x)$
Domain is $\mathbb{R}-\left\{\frac{(2 \mathrm{n}+1) \pi}{2}, \mathrm{n} \in \mathbb{I}\right\}$
Range is R
Cosecant Function
$y=f(x)=\operatorname{cosec}(x)$
Domain is $\mathrm{R}-\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$ (Integers) $\}$
Range is $\mathrm{R}-(1,1)$
Secant Function
$y=f(x)=\sec (x)$
Domain is $\mathbb{R}-\left\{\frac{(2 \mathrm{n}+1) \pi}{2}, \mathrm{n} \in \mathbb{I}\right\}$
Range is R - (-1, 1)
Cotangent Function
$y=f(x)=\cot (x)$
Domain is R - $\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$ (Integers) $\}$
Range is R
"Stay in the loop. Receive exam news, study resources, and expert advice!"